ASSET MANAGEMENT: INTERFACE BETWEEN THE BUSINESS AND THE SYSTEM YOU USE

Author & Presenter: H Mostert, Professional Technologist – Head: Distribution Area East, City of Cape Town
WHY ASSET MANAGEMENT FAILS

- Big gap between financial and asset management systems.
- Financial decisions taken without considering impact on assets.
- Lack of focus on asset technical master data.
- Too much theory and too little practice.
WHY ASSET MANAGEMENT FAILS (Contd …)

- Need asset management system due to data volume and complexity
- Thorough system understanding required before implementation
- You can buy the best system in the world, but if you don’t understand the building blocks, you will fail!
PRACTICAL EXAMPLE OF BAD ASSET MANAGEMENT
KEY ELEMENTS OF SUCCESS

- Framework
- Processes
- Data
- Staff

Asset Management
OPERATIONAL / ASSET STRUCTURE

HIGH VOLTAGE SECTION

- Transmission Lines
- Underground Cables
- Substation 132 / 66 / 11kV

DISTRIBUTION SECTIONS

- 3 x Areas
 - 4 x Districts
 - 4 x Districts
 - 4 x Districts
DISTRICT DATA

<table>
<thead>
<tr>
<th>Area</th>
<th>Districts</th>
<th>Demand MW</th>
<th>Protected Sub</th>
<th>Unprotected Sub</th>
<th>Minisubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Atlantis</td>
<td>97</td>
<td>21</td>
<td>94</td>
<td>168</td>
</tr>
<tr>
<td>North</td>
<td>City</td>
<td>275</td>
<td>189</td>
<td>256</td>
<td>147</td>
</tr>
<tr>
<td>North</td>
<td>Mowbray</td>
<td>284</td>
<td>160</td>
<td>361</td>
<td>250</td>
</tr>
<tr>
<td>North</td>
<td>Vanguard</td>
<td>148</td>
<td>86</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>South</td>
<td>Gugulethu</td>
<td>52</td>
<td>16</td>
<td>63</td>
<td>204</td>
</tr>
<tr>
<td>South</td>
<td>Mitchells Plain</td>
<td>148</td>
<td>57</td>
<td>365</td>
<td>250</td>
</tr>
<tr>
<td>South</td>
<td>Muizenberg</td>
<td>134</td>
<td>84</td>
<td>291</td>
<td>315</td>
</tr>
<tr>
<td>South</td>
<td>Wynberg</td>
<td>175</td>
<td>119</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>East</td>
<td>Bloemhof</td>
<td>264</td>
<td>96</td>
<td>296</td>
<td>1051</td>
</tr>
<tr>
<td>East</td>
<td>Helderberg</td>
<td>122</td>
<td>25</td>
<td>30</td>
<td>831</td>
</tr>
<tr>
<td>East</td>
<td>Oostenberg</td>
<td>135</td>
<td>50</td>
<td>215</td>
<td>845</td>
</tr>
<tr>
<td>East</td>
<td>Parow</td>
<td>162</td>
<td>81</td>
<td>276</td>
<td>597</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1996</td>
<td>984</td>
<td>2660</td>
<td>5076</td>
</tr>
</tbody>
</table>
WHAT IS THE KEY TO A SUCCESSFUL INTERFACE?

- Management must be involved
- Clear-cut framework
- Knowledgeable team
 - Specialists within business and system
- Business must own and use the system
- System must reflect business
- Support teams constantly monitor system - importance of accountability
- Competence level - same across field
FRAMEWORK –

Key Elements

<table>
<thead>
<tr>
<th>Asset Hierarchy</th>
<th>Condition Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Asset Classes</td>
<td>Spares List</td>
</tr>
<tr>
<td>Nameplate Data</td>
<td>Task List</td>
</tr>
<tr>
<td>Doc Links to Technical Objects</td>
<td>Maintenance Plans</td>
</tr>
<tr>
<td>GIS Integration</td>
<td>Business Process Management</td>
</tr>
<tr>
<td>Failure analysis</td>
<td>Role Definition/Mapping</td>
</tr>
</tbody>
</table>
ASSET HIERARCHY

- Characters make up Asset Hierarchy Level
- Structured for Vertical Reporting
- Components follow after structure

EDMCE101/P001=PSW01-CB

- Electricity
- Distribution
- Medium Voltage
- Area
- District
- Operational Area
 - Number of Asset
 - Asset Group Type
 - Number of Asset Group Type
 - Asset Group Type Sub-Type
 - Protected Sub
CLASSES

For horizontal reporting

...PSW01-CB

EDMBR1 (SF6)
EDMBR2 (Oil)
EDMBR3 (Vacuum)

PLANT TYPE:
EDG – Facilities
EDM – Medium Voltage
EDL – Low Voltage
EDS – Secondary Plant
CLASSIFICATION (Nameplate Data)

- Critical for life-cycle costing
- Replacement policy
- Condition Assessment

<table>
<thead>
<tr>
<th>Object Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Object Description</td>
<td>Single/Double busbar</td>
</tr>
<tr>
<td>Functional Location Number</td>
<td>Internal Arc Rated (Yes/No)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Internal Arc Rating (kA)</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Accessibility (AFLR/AFL)</td>
</tr>
<tr>
<td>Manufacturer Date</td>
<td>Panel heaters fitted (Yes/No)</td>
</tr>
<tr>
<td>Commission Date</td>
<td>Panel heaters wattage (40/100)</td>
</tr>
<tr>
<td>Commissioned By</td>
<td>Remote Switching facilities fitted (Yes/No)</td>
</tr>
<tr>
<td>GPS Co-ordinates</td>
<td>Phasing facilities installed (Yes/No)</td>
</tr>
</tbody>
</table>
TASK LIST / MAINTENANCE PLANS

- Preventative Maintenance Schedules
- Use NRS Specifications
- Key for: Cost / Budgets / Staff Requirements / Material Requirements
TASK LIST / MAINTENANCE PLANS

Maintenance Staff Policy Manpower Skill Requirement

Material Inventory Requirement Procurement Policy

Maintenance Budget

Skill x Duration = Cost Material x Quantity = Cost

Task Lists

Equipment Register Master Data
Move away from “we fix it when it breaks”

Visibility of budget requirements

Optimise maintenance tactics – real-time processing

Measure asset management performance

Stability on core system

Reduce future change management efforts
Immobilization

Denial
 - Defense against unacceptable reality

Anger
 - Fighting to regain control

Bargaining
 - Trying to negotiate a Compromise

Depression
 - Frustrated, Sense of loss not Coping

Testing
 - Exploring the new Alternatives

Acceptance
 - Realistically responding to Change

Emotional Response to Change

Fear, confused, overwhelmed
Thank you

- ERP Team
- Maintenance Planners