PROVISION OF BULK INFRASTRUCTURE BY DEVELOPERS: A MODEL THAT WORKS

Robert Zietsman - Geopower
Introduction

- Growth in demand over the past decade exceeded network capacity;
- Fortunately for municipalities the public focus was on Eskom’s load shedding;
- This enabled municipalities to address their infrastructure backlogs;
- In some instances developers were obliged to provide infrastructure;
- Private funding of primary infrastructure was rare and no model existed.
Bulk electricity infrastructure

- In the context of a municipality, comprises of the following shared external services:
 - HV in-feed stations
 - Primary distribution lines
 - Primary switching stations
 - Primary substations
 - Secondary switching substations
 - Secondary main feeder cable sets
Figure 1: Trend in copper price

Copper Price / Tonne

Linear (Copper Price / Tonne)
Infrastructure development

- Infrastructure is developed according to an approved IDP;
- Implementation is based on guidelines of a development master plan;
- Municipalities are influenced by politics, “zones of choice”;
- In many cases the emphasis is on providing infrastructure for previously disadvantaged communities.
Private funded infrastructure

- Privately funded infrastructure is necessitated when:
 - the infrastructure is required to be expedited in advance of the IDP;
 - a development is situated outside the urban edge;
 - a mutual agreement is concluded by the municipality & developer;
 - the municipality lacks the necessary funds to provide the infrastructure.
Service contributions

- Is the once-off, pro-rata contribution made by a developer towards the capital cost of shared bulk infrastructure for new developments;
- Based on the standard R/kVA tariff as promulgated in terms of the Systems Act 2000;
- Consistent with network standards as provided in Annex B of NRS 069;
- Some service contribution tariffs were inadequate in the past.
Financial models

- Private funding of secondary networks is fairly common and the costs are offset against service contributions;
- It is seldom that the cost of secondary networks exceed the service contribution;
- Primary infrastructure is substantially more expensive;
- A special funding model is required.
Financial models

- Capital contribution rebate model
- Capital contribution offset model
- Capital contribution loan model
Capital contribution rebate

- Conventional method adopted by municipalities for mainly secondary works;
- Developer provides the infrastructure and is refunded by the municipality;
- Model proposed in NRS 069;
- Not practical for primary infrastructure.
Capital contribution offset

- Proven model for compensating a developer for primary infrastructure;
- The developer is allocated a fixed capacity, normally restricted to 2/3 of the station capacity at zero contribution;
- The municipality provides the two power transformers;
- No refund or interest;
- The developer has the benefit of increases in the contribution tariff.
Capital contribution loan

- Developer acts as a Bank or Financial Institution by lending the funds for the works to the municipality;
- The developer does not become involved in the execution of the works;
- The municipality allocates the required capacity to the developer;
- The loan is repaid in accordance with the terms and conditions thereof.
<table>
<thead>
<tr>
<th>Model</th>
<th>Rebate model</th>
<th>Offset model</th>
<th>Loan model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity allocation</td>
<td>kVA zoning ADMD standard</td>
<td>Fixed capacity (2/3 of station)</td>
<td>kVA zoning ADMD standard</td>
</tr>
<tr>
<td>Service contributions</td>
<td>Normal</td>
<td>Waivered</td>
<td>Normal</td>
</tr>
<tr>
<td>Scope of works</td>
<td>Determined by municipality</td>
<td>Determined by capacity</td>
<td>Determined by municipality</td>
</tr>
<tr>
<td>Expend – Developer</td>
<td>Cost of works</td>
<td>Cost of works, excl. transformers</td>
<td>Cost of works, less Mun exp</td>
</tr>
<tr>
<td>Expend – Municipality</td>
<td>None</td>
<td>Transformers</td>
<td>Available funds</td>
</tr>
<tr>
<td>Source of capital</td>
<td>Developer</td>
<td>Developer</td>
<td>Developer/Mun</td>
</tr>
<tr>
<td>Contribution tariffs</td>
<td>Actual</td>
<td>Date of agreem.</td>
<td>Actual</td>
</tr>
<tr>
<td>Refund/repayment</td>
<td>Surplus</td>
<td>None</td>
<td>Loan</td>
</tr>
<tr>
<td>Interest</td>
<td>Applicable</td>
<td>Not applicable</td>
<td>Applicable</td>
</tr>
</tbody>
</table>
Points to consider

- A capacity expiry period should be specified, typically 10 years;
- Capacity created by a developer must not be exclusive to that developer;
- Capacity must be allocated in accordance with the network standard;
- Land should be excluded from agreement;
Concl. & Recommendations

- Policy for levying service contributions to be consistent with SANS 204-1 and NRS 069;
- Advisable to amend policy to incorporate provision of primary infrastructure;
- Service contribution tariffs need to be consistent with actual costs;
- Provision of primary infrastructure by developers to be the exception not the rule.
Concl. & Recommendations

- An agreement must be concluded between both parties in advance;
- The land cost to be excluded;
- Council procurement process to be adopted in case of refunds;