From Waste to Energy
From Problem to Opportunity...

AMEU
Technical Conference
6 October 2015

Kenny Gaynor
Director Power Solutions
Cummins Africa
Agenda

- Bio Gas
- Anaerobic Digestion (AD)
- Sources of Municipal Bio Gas
- Bio Gas to Electricity
- Case Studies
Anaerobic Digestion

- A natural biological process
- Anaerobic digestion that produces biogas can occur naturally as in landfills or in controlled environments such as biogas plants.
- These gases contain methane which is burned as fuel.
- Low BTU generator sets required to burn the methane mix gases recovered.
- Utilized gases are damaging to the environment if allowed to escape.
- Use of these gases help to reduce global warming.
Renewable – Biogas / Biodigesters

Cummins gensets can turn methane into electricity and heat for the anaerobic digester, eliminating its release into the air and providing a revenue stream from net metering and GHG credits.
Cogeneration (CHP)

CHP is an efficient choice. Up to 85% of the fuel consumed can be turned into usable energy, in properly sized and operated systems.
Biogas plants

- Biogas plants use airtight steel tanks or covered lagoons as anaerobic digesters.
- The digesters are fed with food, agricultural or other biodegradable wastes.
- These act as feed for various types of bacteria, resulting in high methane biogas.
- The gas is cleaned and then fed into a Generator.
- Waste exhaust and engine heat can be efficiently used.
Landfill

- Traditional landfills contain 50% organic waste, which produces gas naturally through anaerobic digestion.
- Landfill gas consists of approx. 50% methane (CH4) plus CO2, N, ammonia and non-methane organic compounds.
- The biogas is retrieved by drilling wells into the landfill and collecting gas.
- Converts methane to CO2 reducing the greenhouse effect.
Preparation of Landfill site
Landfill – Gas Equipment
Waste Water

- Untreated wastewater in municipal and industrial treatment plants can produce biogas through anaerobic digestion.
 - The biogas is produced by digesters used in the treatment process and then captured as a fuel source.
- The gas recovered can have a high methane content of 65-75%.
- Sludge disposal is a significant issue for municipalities.
- Cost of disposing of sludge and solids.
- Waste heat can be used to dry the sludge and then feed into a Gasifier to produce more electricity.
Energy Crops

- Cactus
- Moringo
- Sorgum Stalks
- Sugar stalks
A Social Business Opportunity
Energy Crop Farming

- Community grown biomass
- Low skills set required
- These crops require no fertilizer and are hardy
- Job creation
- Farmers sell to the Power Plant
- Renewable energy
Plug and Flow BioGas Digester

- Horizontal Biogas Digester - Plug and flow system
- Use of Greenhouse and Engine waste heat to warm digester
- Cost effective material to lower capital cost
Phases to a Bio Gas from Waste Project

Identify Bio Gas Sources
- Feedstock
- Location
- Consistency of Supply
- Tons Vs Power generated

Use of Power and Heat
- Municipal Use of Power
- Surplus?
- Nearby Industrial Parks
- Heat for drying Sewerage Sludge

Commercial Project
- Gas Off-taker - Investor
- Gas Power Plant
- Power Purchase Agreement
- Operation and Maintenance
Cherry Island Landfill

- Owned by Delaware Solid Waste Authority
- Approximately 1,800 tons per day of MSW
 - Currently holds 8M tons of MSW
 - 25 years remaining capacity
- Cummins Power Generation was the successful bidder for gas rights on the RFP
 - Existing contract with Calpine ending, RFP issued in early 2010
- Gas volume currently at 5,000 scfm @ 50% methane content
 - All available for purchase except 1,100 scfm
 - Approximately 110mmBTU/hour of energy to sell
Biogas Pipeline Route
Landfill Biogas – Case Study

The Project
• Methane recovery to generate power for sale to nearby cement plant
• Ten year operation and maintenance agreement

Viridor Landfill, Scotland UK

The Outcome
• Power that can be profitably sold

The Solution
• 3.5 MW turnkey waste-to-energy power plant
Municipal Organic Waste – Case Study

Canary Islands, Spain

The Project

- Reduce volume of waste products entering local landfills
- Economical power and heat from low-Btu methane production process

The Outcome

- Profitable operations
- Sale of excess power to local utility at premium price for biogas-derived power
- Environmentally-sound waste reduction

The Solution: 2,7 Mwe Power Plant
Municipal Utility

CHP Biogas - Le Sueur, MN

Customer’s Background and Needs

- Hometown BioEnergy, Le Sueur County, MN
- Utilize renewable biogas to meet state renewable energy requirements

The Solution

- Combined Heat and Power Application
- Provided 4 grid paralleled QSV91 Phase II engine generator sets

Commercial Overview/Benefits

- Generating electricity for customers from municipal waste biomass feedstock
- Selling fertilizer to end users for additional revenue
Project Experience: Dunbar Landfill

Project Area: Europe

ESB Customer: Viridor

Site Name: Dunbar, UK

- Full turnkey design modular solution on new landfill developed
- Power house construction
- Dewatering particular removal
- Runs on untreated landfill gas
- High siloxane experience

Application: Utility Base Load-power Low BTU

Generator Sets: Four 1750 GQNB
Project Experience: Columbus Waste Water Works

Project Area: USA

ESB Customer: Columbus Water Works

Site Name: Georgia, USA

Application: Converting waste gas generated as a byproduct of waste water treatment into electrical and useful thermal energy.

Current Run Hours: up to 75000 in total

Genset Model Number: Two 1.75 MW C1750 N6C lean-burn generator sets
Project Experience: Riverside Sewage

Project Area: UK

Application: Biogas Combined Heat and Power project

ESB Customer: Riverside Sewage Treatment Works

Current Run Hours: 2000 (2014)

Site Name: London, UK

Genset Model Number: C2000N5C LOW BTU
Thank You

Cummins Power Generation