Managing the Renewables Challenge in Secondary Distribution Networks

Tim Spearing
Product Marketing Manager
Managing the Renewables Challenge in Secondary Distribution

• Challenges in grid management
• Monitoring LV Networks
• Looking ahead
Challenges in grid management
Passive Electrical Networks

- Centralised Power Generation
- Grid supply points
- Distribution Networks
 - Normal operation
 - Fault conditions
 - Abnormal operations
 - One-directional power flow
- Predictability
 - Voltage profiles
 - Load factors
 - Fault currents levels
Challenges in grid management
Active Electrical Networks

- Growth in:
 - Large scale Renewable Energy Sources (RES)
 - Distributed Energy Sources (DES)
 - Low Carbon Technologies (LCT)

- Distributed Energy Sources
 - Bi-directional Power Flow
 - Higher voltage profiles
 - Intermittent nature
 - Less predictable
Challenges in grid management
Addressing generation short fall

• Access to electricity
 • Generation shortfall
 • Reliable access
 • Disruption-linked outages
 • Network Intelligence

• Challenges in grid management
 • “Last mile” of the distribution network
 • Planned & predicted in the past
 • Variable now & in future
 • Customer take-up
Challenges in grid management

Predicable Loading

- Workdays (48): 160 to 623 kVA with 1000 kVA rating
- Saturdays (10): 153 to 597 kVA with 1000 kVA rating
- Sundays (11): 157 to 433 kVA with 1000 kVA rating
- Bank Holidays (2): 156 to 412 kVA with 1000 kVA rating
Challenges in grid management
Unpredictable Loading
Challenges in grid management
Management of LV Networks

• Network Management
 • Improving Quality of Service
 • Improving operational efficiency
 • Enabling DER, ES & other LCT

• Managing “electrical headroom” through ANM
 • Rising voltage levels / fault levels
 • Prevention of overload
 • Integration of DER and LCT

• Increased network visibility
 • Fault prediction, detection & location
 • Planned maintenance, replacement & reinforcement
 • Power quality
 • Technical & non-technical losses
Monitoring LV Networks
System Architecture
Monitoring LV Networks
Substation Monitoring

Rogowski coil sensors

MCU
Monitoring LV Networks

Monitoring Voltages on LV substation

Each row is a substation

Measured voltage
Monitoring LV Networks

Current on LV Feeder
Each dot represents a load reading from the substation on a different day, taken at different times of day over several months.
Monitoring LV Networks
Detecting faults on LV joints

Feeder 1 Max Current Values up to 02/07/2013

Amps

Time

26Jun 27Jun 28Jun 29Jun 30Jun 01Jul 02Jul
Exploding Pavements in Pimlico, Central London

Source: BBC News, Posted at 12:30 pm, April 26, 2013
Looking Ahead
Actionable Information

Planning
• Asset Management
• Reinforcement

Losses
• Technical Loss
• Non-technical Loss

Power Quality
• Voltage profiles
• Total Harmonic Distortion

Faults
• Predict
• Detect
• Analyse
• Fix
Looking Ahead
Integration into Monitoring and Control Systems

- Control Room
 - SCADA / DMS
- MV Primary
 - RMU
- MV/LV Transformer
- LV Feeder Pillars
- LV Monitoring

Alarms
- Min
- Max
- Set-points

Data Analytics
Looking Ahead
Linking LV monitoring to the DMS

- Geospatial network views
 - Real-time outages
 - Load profiles / modelling
 - Blown fuses / broken conductors
 - Under / over voltage
 - Location of LV faults

- Managing “Electrical Headroom”
 - Network reconfiguration
 - Embedded generation
 - Energy storage
 - Demand response

Lucy Electric SCADA system, courtesy of SKELEC
Summary

• Response to generation shortfall
 • More management tools
 • Quality of service
 • Intermittent generation
 • Bi-directional power flows

• Visibility and Active Management
 • Centralised control points
 • Microgrids
 • Off-grid

• Data has more than one use
 • e.g. may assist asset management
THANK YOU

engineering intelligent solutions