

27th Technical Convention 2019

The 4th Industrial Revolution ("4IR") | *Building the Power Utility of the Future, Today*

Challenges of Planning Future High Voltage Power System Networks

Presented by Vasu Chetty Chief High Voltage Engineer Ethekwini Electricity

Hosted by

CITY OF CAPE TOWN SIXEKO SASEKAPA STAD KAAPSTAD

The 4th Industrial Revolution

- Disruption of the existing practices
- Leads to change
- Affects the way in which we live, work and play
- Innovation challenges traditional practices
- Change is fueled by drivers
- If one can predict then one can plan

AMEU

1 of 15

The South African High Voltage (HV) Network

^{27th} Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** *Building the Power Utility of the Future, Today*

Est 1915

3 of 15

Current and Future of Generation

Cumulative generation

Source ref: Eskom TDP 2018

27th Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** *Building the Power Utility of the Future, Today*

Current and Future Load Demands

- Tariffs have increased between 4,95% and 26,2%, yearon-year, effectively quadrupling since 2008
- Slow growth in load demand, more energy conscious customers and demand side management initiatives
- Development is driven by the economy
- 60 MW of privately owned distributed energy resources (DER) within eThekwini
- Urbanisation, formal and informal continue and
- Currently difficult to forecast growth using traditional load and load-forecasting models

Geographic Load Forecasts (GLF)

Time

Case study : 132/11 kV Waterfall 2018-19 Daily Load Analysis

Time

Technical Challenges

- Embedded generation: More small scale and largescale DER integration
- Power flows that could change
- Changing power quality due to the increase of renewable energy generation: fault current levels, flicker, harmonics, etc.
- The focus on cyber security will increase as network connectivity increases
- In-depth knowledge of MV network changes is required, a bottom-up approach

Non-Technical Challenges

- Sites and Servitudes: difficult to acquire, expensive and encroached
- Decreasing revenue
- Theft of electricity, cables and overhead lines
- The constant pressure to reduce carbon emissions and produce green energy
- Long project planning and execution timeframes and work stoppages
- Variance in the demands of customers, due changing usage patterns and shifts in the load curves
- High costs for the transmission projects and the ability to raise capital
- Effects of climate change on infrastructure and network resilience
- Human resources and changing skill sets of employees
- Alternative energy sources

Grid Transition

Current System

- Difficult to Integrate
 DER
- Grid Congestion
- Transaction Growth
- Disincentive to Invest
- 1950s Technologies
- Generic (One Size Fits All)
- Rigid

Gaps

- SQRA
- Communication, Command, and Control
- Fast Models to Analyze Infrastructure
- Forecasting Tools
- DER in Energy Markets

Future System

- Flexibility
- Robustness
- Adequate Capacity
- Environmental Stewardship
- Be a Part of Social Responsibility
- Self-Healing
- Consumer Choice

The transition from the current grid to the future grid (SQRA: Security, Quality, Reliability and Availability; DER: Distributed Energy Resources) Source: The future's smart delivery systems, IEEE, Gellings et al

^{27th} Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** *Building the Power Utility of the Future, Today*

Conclusion

- Disruption, volatility and unpredictability likely to continue
- HV plans need to be agile and adapt to change (modular or mobile substations)
- More customer-centric service is required with stakeholder participation
- Sustainable revenues models and policies (inclusive of DER) are required to ensure a reliable network
- Knowledge sharing between utilities and benchmarking against leading networks
- Future proof technology to enable a smooth transition
- Electricity or Energy?

27th Technical Convention 2019

The 4th Industrial Revolution ("4IR") | *Building the Power Utility of the Future, Today*

Thank you

Hosted by

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD