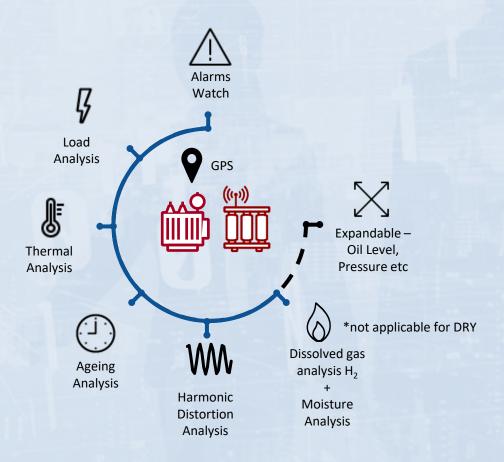


67th AMEU Convention SUSTAINABLE CUSTOMER CENTRIC ELECTRICITY UTILITIES IN THE 4TH AND 5TH INDUSTRIAL REVOLUTION

Digital Distribution Transformers – A Smart and Economical way to manage the LV network

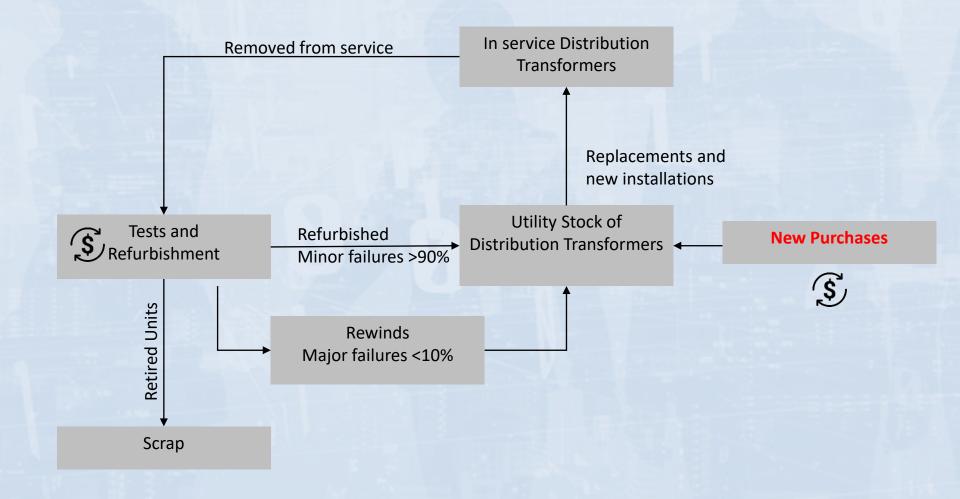
> Dr. Bhaba Das Digital Lead (Asia Pacific, Middle East & Africa) Transformers Business Unit, Hitachi ABB (Singapore)

Hosted by


Agenda

- 1. What is a digital distribution transformer?
 - Features and advantages
- 2. Why invest in digital distribution transformer?
 - From a purchasing policy perspective
- 3. Social cost of ownership of transformers
 - Differences between non-digital & digital transformers
 - Concept of Environmental Costs
- 4. Evaluating the social costs of 2 Digital Transformers with different losses

What is a Digital Distribution Transformer?


Ageing Analysis in Digital Distribution Transformer?

Why invest in Digital Distribution Transformers?

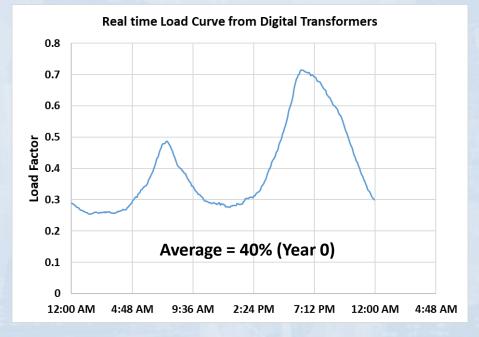
Social Cost of Ownership of Transformers

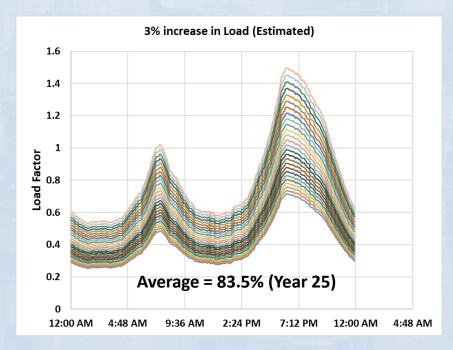
- The social cost of carbon (SCC) translates the future harm inflicted by the release of one additional ton of carbon dioxide into a present monetary value (e.g., \$50 per ton of carbon dioxide emissions).
- It answers the questions: How much damage will a ton of carbon dioxide emissions released today cause in the future?
- And how can those damages be weighed against the costs and benefits of actions taken today?
- Transformer specifiers and owners should assume these environmental costs as losses directly correspond to the additional energy that must be generated by the existing generation mix of the power system of that country.

Loading Estimation

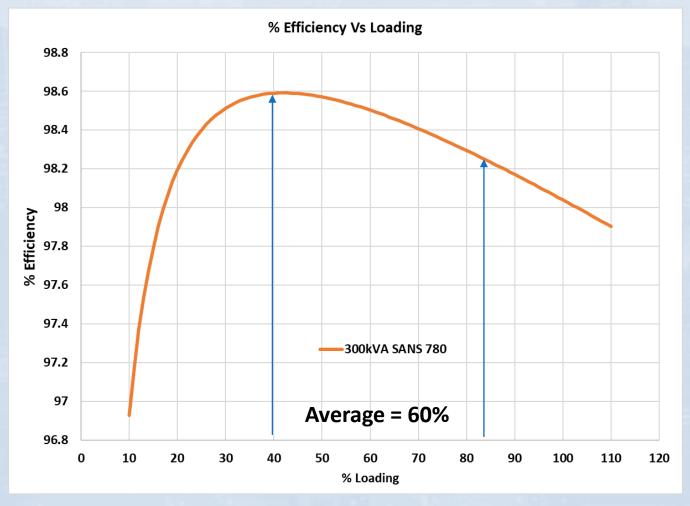
100 kVA	No- Load	Load Loss
(<12kV)	Loss (W)	(W)
SANS 780 Specification	300	1700

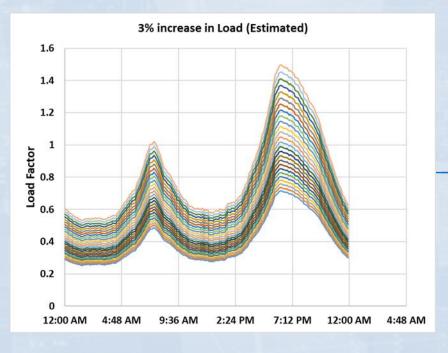
Total Capitalized Cost = Purchase cost + $F_{NL} \times P_{NL} + F_{L} \times P_{L}$ Where F_{NL} = 31,200 R/kW and F_{L} = 6700 R/kW for 25 years


$$x = \sqrt{\frac{6700}{31,200}} = 46.34\%,$$


Evaluating Social Cost from Specification

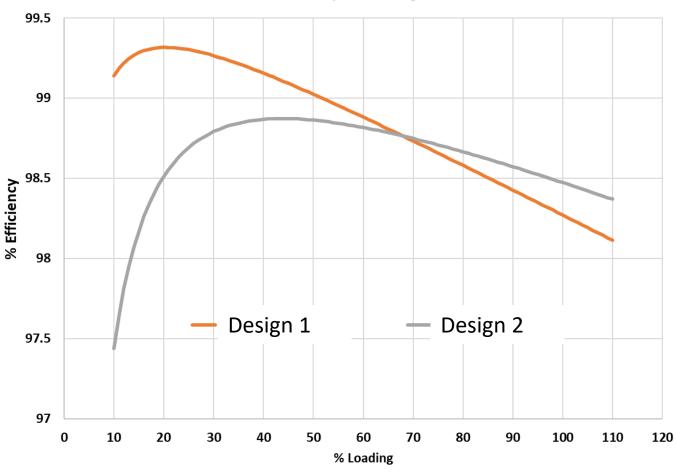
100 kVA	MWh	tCO2/MWh	tCO2	SCC	Env Cost
Total Loss in 25 years	145.64	0.97	141	USD 50/tCO ₂	US\$ 7,050





100 kVA	With Estimated Data	With Real Time Data from Digital Transformers
MWh	145.64	228.25
tCO2/MWh	0.97	0.97
tCO2	141	221.404
SCC	USD 50/tCO ₂	USD 50/tCO ₂
Env Cost	US\$ 7,050	US\$ 11,070

Total Capitalized Cost = Purchase cost + $F_{NL} \times P_{NL} + F_{L} \times P_{L} + Environmental Costs$

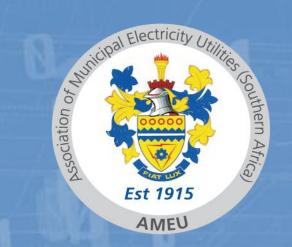

Design 1			
No- Load Loss	Load Loss		
250W	1300W		
Design 2			
No- Load Loss	Load Loss		
70W	1650W		

Characteristics of 2 Designs

% Efficiency Vs Loading

100 kVA	Design 1	Design 2
MWh	179	171.16
tCO2/MWh	0.97	0.97
tCO2	173.85	171.16
SCC	US\$ 50	US\$ 50
Env Cost	\$ 8692	\$ 8301

Without the loading analysis from Digital Transformers, it is difficult to estimate the actual environmental costs of operating transformers



Conclusion

- **Digital Distribution transformer** allows maximum load possible, based on real time measured transformer temperatures, condition, and load.
- Instead of "flying blind" when operating close to the limits, digital distribution transformer provides timely and accurate information as to what the real thermal limit is at any point in time.
- Digital Distribution transformer helps in optimizing capital expenditure on new transformer purchases and helps in accurate estimation of social cost of transformer operation.
- **Digital Distribution transformer** helps in correct formulation of the total costs of ownership formula.
- **Digital Distribution transformer** permits significant savings in deferred capital expenditure and failure rate reduction and other economic benefits.

67th AMEU Convention SUSTAINABLE CUSTOMER CENTRIC ELECTRICITY UTILITIES IN THE 4TH AND 5TH INDUSTRIAL REVOLUTION

Thank you

osted by