AMEU Strategic Adviser's Presentation Association or White Virtual AMEU KZN Branch Meeting 2 October 2020

Electricity Utilities Sou

Est 1915

AMEU

Presentation by Vally Padayachee CD(SA); MBA; MSc(Eng); GCC; EDP (Wits) AMEU Strategic Adviser 20 August 2020

SALGA FEEDBACK

- 1. There is a discussion paper on Reform that has been developed to kick-start the reform agenda. This process is underway let by DMRE and Cogta, politically led by Deputy Minister of COGTA. The discussion paper once final, will be presented to the politicians for way forward
- 2. SALGA Committee on TID Rollover On Monday 05 October 2020, the TORs for the committee will serve at the SALGA EXCO for approval. Once that is done, the committee will start sitting. ToRs were circulated to all municipalities and affected stakeholders for comments, which was closed on 18 September 2020.
- **3.** A workshop on Cost of Supply is planned to hosted by SALGA and NERSA, to unpack the COS Framework. The workshop will be open to all municipalities and Eskom, it is planned to be on 15 October 2020 online. Invitations will be sent our shortly.
- 4. A workshop was held with NERSA in September on updated and reviewed NMD Rules, this documents will be undergoing NERSA decision making processes shortly, it will still be sent out for public comments.

DMRE – RMIPP EMERG PROC OF ELECTRICITY

Objectives of the RMIPP Programme

To procure 2 000 MW of capacity, on a Least Cost and Least Regret basis, using various technology solutions identified in table 5 of the Integrated Resource Plan for Electricity 2019 (IRP 2019).

RFP Situational Analysis

- South Africa is currently facing a power crisis and expeditious procurement of energy into the national grid is critical to maintain security of supply.
- The IRP 2019 indicates a short-term electricity supply gap of approximately 2 000 MW between 2019 and 2022.
- Various views on the size of the gap CSIR indicated that this gap is up to 5 000 MW, Eskom stated its own requirements of a 4000 MW of short to medium term supply gap and there are views in the market of a much larger gap.
- The RMIPP Procurement Programme is FIRSTLY a direct response and aim to fill the supply gap, alleviate the current electricity supply constraints and reduce the extensive utilisation of diesel-based peaking electrical generators in the medium to long term

DMRE – MINISTERIAL DETERMINATION GAZETTE 1015

- 1. Eskom designated to be off taker for the 11873 MW of power through various technologies
- 2. Municipalities NOT designated as an off-taker
- 3. The DMRE Minister based this decision on the NERSA Concurrence of the Ministers Determination which indicates INTER ALIA the following:

"5.7.8 NERSA also notes and supports the notions shared regarding the decision on who the buyer should be, which must be taken while considering the upcoming changes in the electricity sector, the unbundling of Eskom and well as New Generation Regulations amendments. However, given that neither of these processes have been finalised, it is NERSA's position that for this allocation, Eskom should remain the buyer. In the determinations that will follow after the implementation of the IRP 2019, and once the New Generation Regulations have been amended, municipalities can take part in establishing New Generation within their municipalities. "

"5.7.9. Once the unbundling of Eskom has been completed and all decisions regarding the role of the System Operator and the appropriate placing of the mandate to buy power for the system has been outlined, future determinations will take this into account as well."

NERSA LIST OF MUNICIPALITIES WITH APPROVED SMALL-SCALE-EMBEDDED-

GENERATION ("SSEG") TARIFFS AS OF 2 SEPTEMBER 2020

- 1. Beaufort West
- 2. Bitou
- 3. Breede Valley
- 4. Cape Agulhas
- 5. Cederberg
- 6. City of Cape Town
- 7. City of Mbombela
- 8. City of Tshwane
- 9. City Power JHB
- 10. Drakenstein
- 11. Emalahleni MP
- 12. Ephraim Mogale
- 13. eThekwini Metro
- 14. George
- 15. Govan Mbeki

- 16. Hessequa
- 17. Kai !Garieb
- 18. Knysna
- 19. Langeberg
- 20. Matzikama
- 21. Buffalo City
- 22. Mossel Bay
- 23. Nelson Mandela Bay Metro
- 24. Oudtshoorn
- 25. Saldanha Bay
- 26. Sol Plaatjie
- 27. Stellenbosch
- 28. Swartland
- 29. Theewaterskloof

Bottlenecks/issues inhibiting the roll-out of RE in terms of IRP2019

Est 1915 AMEU

- 1. The absence of **market rules and contracting clarity** with respect to RE rollout or deployment
- 2. The absence of Integrated planning with RE as a defined component of the municipal energy portfolio every municipality needs an integrated energy master plan for inter alia the optimal procurement and integration of generation of RE that will result in a least cost approach and ensure the synergistic implementation of same in coordination with national level plans like the IRP2019.
- 3. The complex and debilitating National Treasury and municipal approval procedures and mechanisms for prudent investment in RE initiatives and projects; financial constraints by government, Eskom and municipalities, including the absence of government guarantees; the challenge of a single buyer model with a probably already technically insolvent off-taker (Eskom) and the need for a state owned **Independent Transmission System and Market Operator ("ITSMO")** and a diversified, competitive generation sector.

Suggestions to address the bottlenecks/burning issues as identified(1)

- Broadly speaking the centuries old current municipal energy commodity ("kWh") business model together with the associated funding model is also for all intents and purposes "dead" and obsolete models respectively & needs urgent "revamping" to facilitate the quick and easy ingress of cost effective RE onto a municipal grid – the possible migration to inter alia an energy services business model (with an appropriate organisational structure) should be explored
- 2. Consider a national municipal RE framework wherein the rollout of RE is aggressively pursued and incentivised as an integral part of the municipal energy portfolio both from a supply ('front of the meter") & demand ("behind the meter") perspectives
- 3. Municipalities must find ways to improve their energy business sustainability to play a leading role in driving the energy market reform do not leave this to Eskom or "other" parties to resolve. In general, inter alia current rooftop and energy storage options must be further leveraged in its energy mix options. Municipalities must also have access to other alternatives e.g. PPA's with IPP's and wheeling arrangements to enhance their business sustainability and linked to the market reform requirement or imperative.

*** To successfully achieve all of the above suggestions it is paramount and imperative that government creates an ideal and conducive environment and/or platform***

PROPOSED AMEU GUIDELINES – ELECT SUPPLY BYE LAWS

- 1. Last guideline in our records goes back many years
- 2. Currently I understand that the CoCTN electricity bye laws is being utilised
- 3. We as AMEU aim to come up with with a revised set of elctricicty by e laws given the significant change in inter alia the electricity supply landscape in SA

KEY FOCUS AREAS

• NMD Rules

The Rules submitted to the subcommittee meeting to be held on 6 October for request stakeholders to comment.

Cost of supply studies

NERSA participating in the workshops arranged by SALGA to assist with the development of cost of supply studies.

• SSEG Tariffs

Tariffs for Municipalities were approved at a special meeting after approval of the normal approval process.

Draft rules on table awaiting approval for consultation

SSEG Rules

Reseller Rules

NRS 048-9 Ed.3 (Review of Ed.2) - The task

- **Constraint type**: *capacity/energy*
- **Constraint**: *extended* (*maintenance*)
- Blackout prevention: response
- Blackout recovery: restoration
- The future power system: embedded generation, wheeling
- safety & environment power economy system the constitution

• Essential load requirements: verification

• Critical loads: schools, hospitals, telecoms, sewage

- Predictability: warning, planned reduction
- Transparency: *outlook*
- Schedules: 2-4hr, staggered
- **Curtailment**: stage %, base, execution (24hr, accounting for maintenance)
- Equity: economics / system limitations
- Exemptions: deep level mines
- Non-payment: municipal, feeder level
- **COVID-19**: economic recovery
- **Philosophy**: *DR*, synch maintenance
- Electricity Regulation Act: Grid Code, equity
- **Disaster Management Act**: (> Stage 3 risk reduction, COVID-19)
- Stakeholder engagement: NERSA process

STSA MATTERS

PROPOSED FORMATION OF THE INDUSTRY COMMITTEE BY SALGA ON TOKEN IDENTIFIER (TID) ROLLOVER EVENT BY 2024

1. OBJECTIVES

- There is a pending business risk to the prepayment metering industry globally that requires urgent action to circumvent it. In this respect, SALGA would like to form an Industry Committee to:
- Ensure Municipalities' readiness to deal and mitigate this particular business risk by 2024.
- Provide technical/advisory service and support to the municipalities in addressing this risk by 2024

2. BACKGROUND

 On 24 November 2024 all prepayment meters based on Standard Transfer Specification (STS) technology will stop dispensing electricity, thus presenting a significant risk to the service levels, sales and revenue collection of all municipalities to end user customers in the electricity, water and gas utilities business.

NEW STSA Board MEMBER

AMEU President Elect, Ms Jayshree PERSHAD from eThekwini Metro was appointed by the AMEU EXCO to represent the AMEU on the STSA Board. We wish Ms Pershad all the best.

DHS Urban Settlements Development Grant allocation to electricity for 2020/21

- 1. BCCM R 17 000 000
- 2. Cape Town R 22 943 450
- 3. NMBM R 41 260 285
- 4. eThekwini R 276 956 000
- 5. CoJ R 98 377
- 6. Tshwane R 244 934 945
- 7. Ekurhuleni R 230 000 000
- 8. Manguang R 52 069 978

TOTAL = R8	85 263 035
------------	-------------------

DMRE REVISED INEP BUDGET – FY 2020/2021

2020/21 DMRE BUDGET REDUCTION FOR INEP

2020/21 FINANCIAL YEAR

Programme	Main Appropriation ('000')	% Reduction	Proposed reduction ('000')	Final Allocation ('000')
INEP-Munics	R1 858 752	26.9%	R500 000	R1 358 752
INEP-Eskom	R3 001 483	33.32%	R1 000 000	R2 001 483
INEP- <u>Non Grid</u>	R220 160	0%	RO	R220 160
Total	R5 080 395		R1 500 000	R3 580 395

Regulations on Carbon Offsets

Regulations on Carbon Offsets under section 19 of the Carbon Tax Act, No 15 of 2019

- 1. The Regulations further provide an offset mechanism that may be utilised to develop carbon offsets projects to enable reduction in respect of carbon tax liability.
- The Department of Mineral Resources and Energy (DMRE) as the administrator of the Carbon Offset Administrator hereby activates the Carbon Offset Administration System (COAS) to be live as of 23 July 2020.
- 3. The DMRE invites all the relevant participants as outlined by the Carbon Offsets Regulations to **register on the system** to enable the submission of project applications for further processing.

Weekly Generation Availability

		Week										Annual (J	Jan - Dec)			
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	YTD	2019
Energy Availability Factor (Eskom EAF)	70.00	70.50	66.16	69.35	70.34	69.97	67.72	63.80	65.56	67.20	64.14	64.36	65.49	67.24	66.06	66.93
Planned Outage Factor	5.76	7.08	6.98	7.31	7.59	7.59	10.68	11.87	10.36	12.49	12.01	13.92	14.12	15.68	9.61	9.94
Unplanned Outage Factor	20.29	18.54	22.41	19.07	18.05	18.13	17.21	20.29	20.62	16.74	21.14	19.65	18.55	15.65	21.52	21.57
Other Outage Factor	3.95	3.88	4.45	4.27	4.02	4.31	4.39	4.04	3.46	3.57	2.71	2.07	1.84	1.43	2.81	1.56

- **EAF:** Ratio of the available energy generation over a given time period to the maximum amount of energy which could be produced over the same time period.
- **Outage Factors:** Ratio of the energy losses over a given time period to the maximum amount of energy which could be produced over the same time period.
- **YTD:** Year-to-Date (01 January of current year to current week)

Three Month Outlook

		MW	MW	MW	MW	MW	MW	MW	MW
Week Start	Week	RSA	Residual	Available	Available	Planned	Unplanned	Planned	Likely Risk
		Contracted	Forecast	Dispatchable	Capacity (Less	Maintenance	Outage	Risk Level	Senario
		Forecast		Capacity	OR and UA)		Assumption (UA)	(-14200 MW)	(-16200 MW)
28-Sep-20	40	31629	29886	41550	27350	6881	12000		
05-Oct-20	41	31166	30078	41625	27425	6806	12000		
12-Oct-20	42	30460	29131	41156	26956	7275	12000		
19-Oct-20	43	30558	29265	42463	28263	5968	12000		
26-Oct-20	44	30221	28927	41823	27623	6608	12000		
02-Nov-20	45	30093	28549	42074	27874	6357	12000		
09-Nov-20	46	30024	28479	41804	27604	6627	12000		
16-Nov-20	47	30001	28456	41804	27604	6627	12000		
23-Nov-20	48	29955	28411	41994	27794	6437	12000		
30-Nov-20	49	29934	28324	41994	27794	6437	12000		
07-Dec-20	50	29829	28115	41674	27474	6757	12000		
14-Dec-20	51	29576	27862	42249	28049	6182	12000		
21-Dec-20	52	28238	26524	41801	27601	6630	12000		
28-Dec-20	53	27532	25346	41787	27587	6644	12000		

• The maintenance plan included in these assumptions includes a base scenario of outages (planned risk level). As there is opportunity for further outages, these will be included. This "likely risk scenario" includes an additional 2000 MW of outages on the base plan.

- The expected import at Apollo is included. Avon and Dedisa is also included.
- The forecast used is the latest operational weekly residual peak forecast, which excludes the expected renewable generation.
- Operating Reserve (OR) from Generation: 2 200 MW
- Unplanned Outage Assumption (UA): 12 000 MW
- Reserves: OR + UA = 14 200 MW
- Eskom Installed Capacity: 47 426 MW (Incl. non-comm. Kusile units)
- Installed Dispatchable Capacity: 48 431 MW (Incl. Avon and Dedisa)

Risk Level	Description
Green	Adequate Generation to meet Demand and Reserves.
Yellow	< 1 000MW Possibly short to meet Reserves
Orange	1 001MW – 2 000MW Definitively short to meet Reserves and possibly Demand
Red	> 2 001MW Short to meet Demand and Reserves

Renewable Energy Statistics

Maximum Contribution (MW) - based on System Operator data (subject to metering verification)									
Cal Year	Indicator	CSP	PV	Wind (Eskom+IPP)	Total (Incl other REs)				
	Maximum	503.7	1,684.0	1,904.3	3,812.3				
All time	Max Date	22-Sep-2020 15:00	27-Sep-2020 11:00	25-May-2020 13:00	13-Sep-2020 12:00				
2016	Maximum	200.9	1,350.5	1,229.8	2,576.3				
2010	Max Date	11-Aug-2016 14:00	16-Dec-2016 12:00	23-Dec-2016 13:00	23-Dec-2016 13:00				
2017	Maximum	302.0	1,432.5	1,708.2	3,142.7				
2017	Max Date	07-Nov-2017 10:00	27-Oct-2017 12:00	25-Dec-2017 18:00	13-Dec-2017 13:00				
2010	Maximum	399.7	1,392.1	1,902.3	3,298.9				
2018	Max Date	04-Dec-2018 16:00	03-Oct-2018 12:00	02-Oct-2018 16:00	28-Sep-2018 11:00				
2010	Maximum	502.1	1,375.6	1,872.0	3,530.6				
2019	Max Date	24-Sep-2019 11:00	19-Jan-2019 12:00	14-Dec-2019 15:00	27-Oct-2019 13:00				
2020	Maximum	503.7	1,684.0	1,904.3	3,812.3				
2020	Max Date	22-Sep-2020 15:00	27-Sep-2020 11:00	25-May-2020 13:00	13-Sep-2020 12:00				

	Maximum	Maximum Difference between Consecutive Evening Peaks (MW							
	based on	based on System Operator data (subject to metering verificatio							
REs)	Cal Year	Indicator	Total (Incl other REs)						
		Maximum	1,487						
2:00	All time	Max Date	31-Aug-2020 to 01-Sep-2020						
	2010	Maximum	828						
:00	2016	Max Date	30-Aug-2016 to 31-Aug-2016						
	2017	Maximum	1,038						
:00	2017	Max Date	19-Jun-2017 to 20-Jun-2017						
	2019	Maximum	1,336						
:00	2018	Max Date	01-Sep-2018 to 02-Sep-2018						
	2010	Maximum	1,464						
:00	2019	Max Date	05-Jul-2019 to 06-Jul-2019						
	2020	Maximum	1,487						
:00	2020	Max Date	31-Aug-2020 to 01-Sep-2020						

Note: Times are expressed as hour beginning

Current Installed Capacity (MW)						
CSP 500.0						
PV	1,957.1					
Wind (Eskom+IPP)	2,111.7					
Total (Incl other REs)	4,590.5					

Annual E	Annual Energy Contribution (WWN) - based on System Operator data (subject to metering verification)										
Cal Year	Indicator	CSP	PV	Wind (Eskom+IPP)	Total (Incl other REs)						
All Time	Annual	1 557 151	3 324 080	6 624 642	11 586 9/15						
Maximum	Energy	1,337,131	3,324,383	0,024,042	11,000,940						
2016	Total	529 522	2 630 141	3 730 771	6 951 261						
2010	Energy	020,022	2,000,141	0,700,771	0,001,201						
2017	Total	687 703	3 324 857	5 081 023	9 198 632						
2017	Energy	007,700	0,024,001	0,001,020	3,130,002						
2018	Total	1 031 288	3 282 124	6 467 095	10 887 902						
2010	• Energy	1,001,200	0,202,124	0,407,000	10,007,002						
2010	Total	1 557 151	3 324 989	6 624 642	11 586 945						
2015	Energy	1,007,101	0,02 1,000	0,021,012	11,000,940						
2020	Total	1 081 558	2 780 249	4 716 061	8 640 022						
2020	Energy	1,001,000	2,100,240	4,710,001	0,040,022						

Virtual meetings /Webinars

SUCCESSFUL VIRTUAL MEETINGS/WEBINARS HOSTED SINCE LOCKDOWN:

- 1. Impact of Covid pandemic on service delivery
- 2. DMRE-DHS-AMEU Metro Forum
- 3. PIESA Utility Management webinar (11 separate sessions)
- 4. Virtual AMEU Highveld Branch Meeting
- 5. Virtual AMEU Goodhope Branch Meeting
- 6. Virtual AMEU Cluster Committee meetings
- 7. Virtual AMEU Panel Discussion on Zero-Based-Budgeting
- 8. Number of bilateral and multilateral virtual meetings with SALGA, NT, GIZ, DMRE, MISA etc

FORTHCOMING VIRTUAL MEETINGS/WEBINARS TO BE HOSTED TILL END DEC 2020

- 1. KZN (Oct 2020) and Eastern Cape (Dec 2020) Branch meetings
- 2. AMEU and ESKOM Dx leadership meeting
- 3. DHS-DMRE-AMEU electrification projects rollout meeting
- 4. DMRE NEAC meeting
- 5. NT/DMRE/SALGA/AMEU EDI restructuring panel discussion
- 6. Various bilateral and multilateral meetings with various stakeholders (similar to above)

Thank you