Energy Vision for the City of Cape Town

100% • Clean • Accessible • Reliable • Equitable • Safe

Loadshedding Mitigation (Phase I)

Supply and demand steps to mitigate impact of loadshedding (Jan 2022 – Dec2023)

Energy Equation	Mitigation Action	Intended Effect	Comment		
Supply Side	Reserve <u>more</u> Steenbras units for loadshedding mitigation; optimise its operating regime to minimize financial impact	Higher Steenbras energy output available for LS mitigation, subject to dam levels	 Requires no capital Potential financial impact (arbitrage) 		
Supply Side	Activate all City-owned RE and other generation (Atlantis; SSEG; LfGtP; Mini-hydro, OCGTs)	Additional energy sources for the City to draw from during periods of low/negative RM	 Can offset Steenbras midday generation need Daily gen forecast critical 		
Demand Side	Load curtailment campaign with LPU's to reduce consumption upon request in exchange for tariff reduction / lower levels of loadshedding	Instantaneous demand reduction, localised to industry (most citizens unaffected)	 Short term measure that limits broad impact of LS Impact on electricity sales revenues 		
JIUC	Power Heroes residential Demand Response programme	Instantaneous reduction in demand	 Potential public opposition Comms network needed 		

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD CoCT network has to be designed/adapted to enable the implementation of the LSMP

Loadshedding Mitigation (Phase II)

Supply and demand steps to mitigate impact of loadshedding (Jan 2024 – Dec2025)

Energy Equation	Mitigation Action	Intended Effect	Comment		
Supply Side	Secure PPA with Solar and Hybrid IPPs (RE, BESS, CCGT) at lowest possible LCOE	 Solar IPP: Non-dispatchable but additional energy source available quickly Hybrid IPP: Dispatchable power source available quickly (2-3 years post-PPA) 	 Solar: Tariff should be lower than Eskom Hybrid: Tariff will be much higher than Eskom (~ R2/kWh) Long term agreement required (15-20 years) 		
	Implement utility scale BESS	Dispatchable power source deployed quickly, can serve multiple uses	 Economics improved when paired with RE <u>Cannot run long periods</u> Scalable 		
Demand	Expand EE to high usage CoCT facilities	Lower demand allows more Steenbras pumping	Impact on operations to be carefully managed		
Side	Broaden Power Heroes Programme to reduce Res loads other than geysers	Instantaneous reduction in demand	Large communications network upgrades and customer buy-in needed		

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD CoCT network has to be designed/adapted to enable the implementation of the LSMP

Phasing of Supply and Demand Levers

- Phasing of supply/demand levers spread over 40month period (Jan '22 Dec '25)
- Full suite of options can be available by end 2025 to mitigate LS to agreed extent
- Enabling network projects and associated timelines will impact program

	Lever	2022		2023		2024		2025	
		H1	H2	H1	H2	H1	H2	H1	H2
	Steenbras								
	City-Owned GT								
	DR (ILS)								
	City-Owned RE								
	Enhanced EE Program								
	RE IPP								
CITY OF C. ISIXEKO S. STAD KAA	Hybrid IPP								

