LPVT'S – The Missing Enabler

Presented by : Randolf Wenhold AMEU/SARPA 9 September 2022

Background Problem Statement

- A Drive for Green Energy Adoption
- Higher Levels of Renewable
 Saturation
- Typical Large Power Users become "Prosumers"

 Mostly Inductive and Resistive Loads

 Introduction of Electronic Loads and Non-Linear Elements together with Inductive and Resistive Loads

 Then came Solar PV together with Electronic Loads and Non-Linear Elements together with Inductive and Resistive Loads

 Now we are in the BESS Era, together with Solar PV, with Electronic Loads and Non-Linear Elements together with Inductive and Resistive Loads

 Driving a Green Economy may soon have your network looking like this

• Even V2G potentially

Conventional Instrument Transformers

- Bulky
- Low Bandwidth
- Dangerous to Open-Circuit (CT's)
- Dangerous to Short-Circuit (VT's)

"Insanity is doing the same thing over and over again and expecting different results." – Smart Guy

Low Power Instrument Transformers

- The definitive way to measure voltage within MV networks
- Successors to conventional instrument transformers
- Lower-Cost
- Compact
- Broader frequency response
- Easier to Install

Standards

- Electronic voltage transformers
 - IEC 60044-7
- Low-power passive voltage transformers
 IEC 61869-11

Low Power Instrument Transformers

Voltage Sensors

Current Sensors

KECA 80 D85

Low Power Instrument Transformers

CTLAB

Principle of Operation

- Linearity
- Reduced resonance impact
- Extended bandwidth
- Smaller in size

LPVT

Principle of Operation

Principle of Operation

• Linearity

Rogowski Coil

- Unsaturable
- Extended bandwidth
- Smaller in size

CT LAB - LPVT Amplifier

- 100kHz Bandwidth
- Powered from DC
- Output : 63,5 V

CT LAB – VECTO 3 Analyser

- 500kHz Sampling
- Up to 63rd Harmonic (3,15kHz) on traditional plot
- 25kHz Graphs in 200Hz Bands

ECTO OS

• IEC61000-4-30 Ed3 Class A

Intelligent Minisub Installation

Advanced Datastream

- With the integration of renewables there is a need for advanced datastreams in technology for operation, analysis, control and management of renewable sources
- Advanced Datastreams:
 - Conventional PQ
 - Small Signal Oscillations for stability analysis
 - Prevailing phasors to identify harmonic sources
 - Higher order harmonics
 - Synchrophasor
- Need broadband sensors (VTs & CTs)
 - Low Power VT/CT

Phasor Measurement Unit (PMU)

What is a PMU?

- Estimate phasor quantities (magnitude & phase angle) of electrical signals
- Time synchronization is usually provided by GPS and allows synchronized real-time measurements of multiple remote points on the grid.
- Resulting measurement is known as a synchrophasor
- 1 sample per cycle
- Implemented dedicated PMU protocol

 Streamed to control room and requires dedicated software to visualise/analyse

Common Reference Signal at remote locations possible due to GPS synchronization

Small Signal Oscillations

What are small signal oscillations?

- Subsynchronous oscillations in Australia
- Stability issues specifically of concern in weak networks, with high level of renewable penetration
- Generation sources start oscillating (at +-19 Hz) with rest of the power system
 - Amplitude
 - Phase
 - Normally in bursts/pulses
- Can cause control systems to become unstable

- Small signal stability analysis has become internationally a topic of discussion
- There is a need for a tool that can accurately (and with much lower data rate compared to synchro-phasors) identify and analyse grid oscillations

What new functionality does analysis of Small Signal Oscillations bring?

- Identify amplitude, phase angle and frequency of oscillation
- Identify contribution of a source with phase angle information
- Profile/trend oscillation data for analysis

Small Signal Oscillations – Spectrum

1s Interval – 1 Hz Resolution

- Raw waveform window size = 1s
- Store first 60 values
 - @ 1 Hz Resolution
 - Amplitude and Phase Angle
- Fast data stream
 - Describes the dynamic behaviour

10s Interval – 0.1 Hz Resolution (HD)

- Raw waveform window size = 10s
- Store first 60 values
 - From a user defined frequency
 - @ 0.1 Hz Resolution (i.e. 6 Hz range)
 - Amplitude and Phase Angle
- Slower
 - But with 10 times higher resolution

- Expensive parameter
- To be used once an oscillation is identified using a monitor (Diagnostic)

Example of Data found

CTLAB

Complimentary Online Training

Topic: Voltage Waveform Quality Assessment

Contact Us

Tel: +27 (21) 880 9915 Cell: +27 (64) 880 3655 E-Mail: info@ctlab.com Web: <u>www.ctlab.com</u>

Questions? – Thank You

Power Analyser | Power Quality Analyser | Micro Synchrophasor Analyser | Digital Fault Recorder | Modbus, DNP3, IEC61850 protocols

The grid-monitoring edge computer