27th AMEU Technical Convention 2019

The 4th Industrial Revolution ("4IR") | *Building the Power Utility of the Future, Today*

Open Source remote monitoring in the municipal landscape

Presented by Resham Singh Chief Engineer: SCADA eThekwini Electricity

Electricity

Est 1915

AMEU

sociation of Multiplicity

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD

Introduction

Africa's Technical sovereignty

Industry 4.0

Prosperity and modernisation

Technology participation

4.7 : 1 Import Export (GDP)

Open source

Enel Energy's Open Meter

2 of 18

Business case

3 of 18

	Asset Description		Count	Monitoring opportunities	Cost to monitor	Total cost	
	Distributor substations bistributor substations		731	Per Bay Digitals (6): Breaker status; breaker position; cable earth; overcurrent; earth fault; relay fail Analogue (1): Phase current Control (2): Open and close General substation: a.c. fail; d.c. fail; charger fail.	~ R 50 000 (2014)	~ R 36 550 000	0 00 100 00 00 100 00
4	Mini-substations	Typically residential 11 kV to 400V transformers.	5849	1 x EFI 3 x LV fuse fail (per circuit) x (1-6) circuits 1 x door open 3 x CTs (LV busbar)	~ R 28 000 (2015)	~ R 163 772 000	
	Kiosks	Industrial, commercial and residential 11 kV to 400 V transformer with switchpillar and LV panel.	2835	1 x EFI 3 x LV fuse fail (per circuit) x (1-6) circuits 1 x door open 3 x CTs (LV busbar)	~ R 28 000 (2015)	~ R 79 380 000	
	Pole top transformers	Residential (typically rural). Similar concept to MSSs.	6090	3 x 11 kV drop-off fuse 3 x LV fail (per circuit) x (1-3) circuits 3 x CTs (LV)	~ R 28 000 (2015)	~ R 170 520 000	

Monitoring Opportunities

- a) The deployment of monitoring equipment only at strategic points on the network
- b) Leveraging Internet of Things (IoT) devices over Low Power Wide Area Networks
- c) The use of open source technologies.

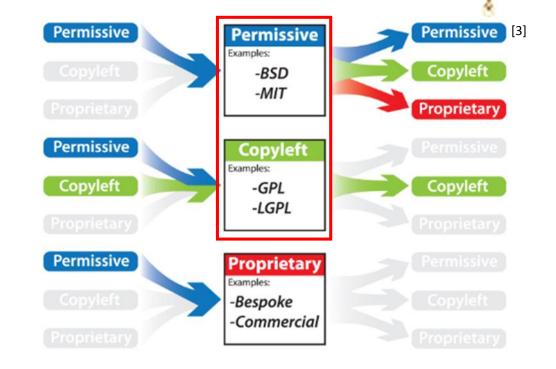
Research Objectives

- a) Can open source technologies offer a technically viable remote monitoring solution?
- b) What are the non-technical challenges that exist with open source technologies?
- c) What are the cost advantages associated with the use of open source technologies?

Technical requirements

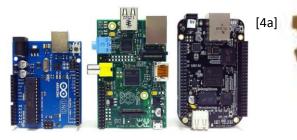
Crestmore substation 3532

27th AMEU Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** *Building the Power Utility of the Future, Today*


Technical requirements

Characteristic	Requirement
1. Provisioning of digital inputs	Minimum 8 expandable
2. Provisioning of digital outputs	Minimum 2 expandable
3. Provisioning of analogue inputs	Minimum 4 expandable
4. Standard communications protocol over Ethernet	DNP3 (slave), Modbus (master)
5. Provisioning of Human Machine Interface	Web browser
6. Should be easily configurable through a web interface	Web browser
7. Compliance with temperature and EMI regulations	IEC61850-3 CX3; IEC 61000
8. Compliance with cyber security requirements	IEC62351 (Open VPN)
9. Compliance to availability/uptime requirements	Five nines principle

What is it? Concept that is created and owned by the public


Open Source tenets					
1. No fee for distribution	4. No discrimination against fields for endeavour				
2. Un-compiled and compiled source code must be made available	5. The license must be technology neutral				
3. Must allow for modifications of source code	6. The license must not restrict other software, etc.				

7 of 18

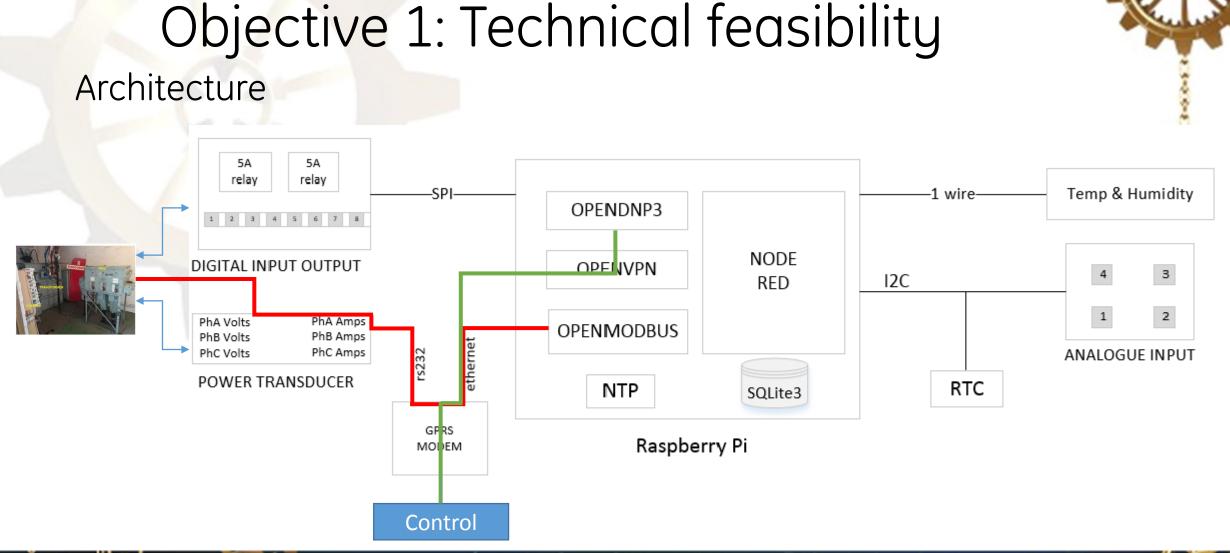
Hardware platforms

8 of 18

Board	Arduino Uno ^[4c]	RPI [4d ¹²³]	BeagleBone [4b123]	Requirement
Model	R3	Model 3B	Black	Open Source eco-system
Flash	32 kB	SD Card	4Gb Onboard	External/on-board
GPIO	14	40	69	At least 8 and expandable
Analog Input	6	External	7	At least 4 and expandable
IDE	OS - Arduino	OS - Linux	OS - Linux	Open Source (OS)
Ethernet	None	Yes	Yes	Yes
Temperature performance	85 °C (1)	85 °C ⁽²⁾	90°C (processor)	70 °C (overall)
Project	Arduino LLC	RPi Foundation	BeagleBone.org	-
Cost	USD 30	USD 35	~USD 50-100 (variable; various sources on google)	-

(1) ATMEGA chip

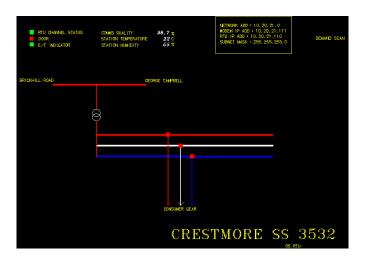
[4a]

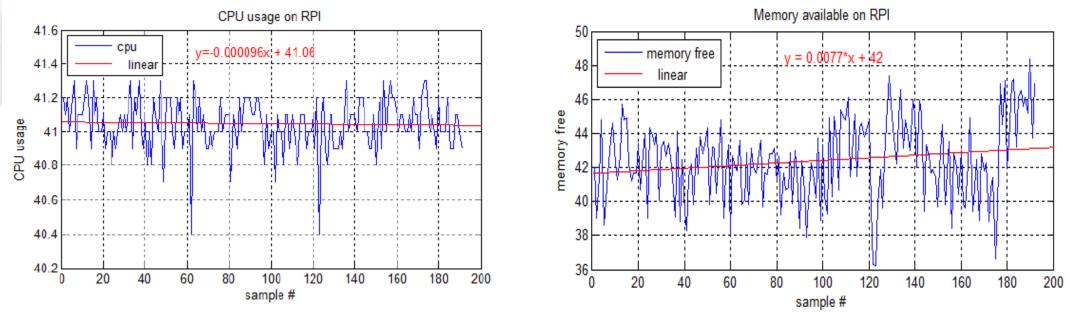

(2) Broadcom Application processor runs the hottest and can withstand temperatures of up to 85 °C. COMPULAB offers RPI unit with maximum operating temperature of 80 °C.

Objective 1: Technical feasibility

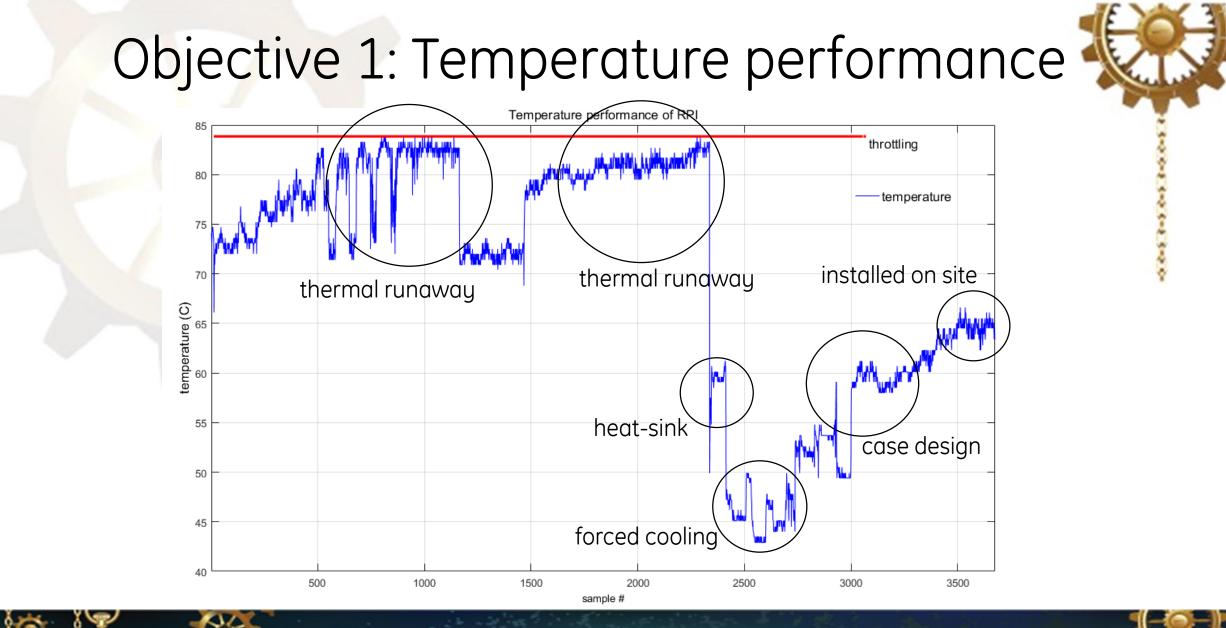
Are there open source applications in the market that meet our requirements; and How mature are these applications?

Software	Stars	Contributors	User group	Activity
OpenDNP3	158	22	386 (674)	2013 2014 2019 2019 2019 2019
OpenVPN [5b1] [5b2]	4024	102	34713 (19123)	40 20 0 January 2012 2013 2014 2016 2016 2017 2018 2019 2010
PyModbus ^[5c]	866	40	334 (263)	20 19 2009 2011 2012 2013 2014 2016 2016 2017 2016 2017 20009 2011 2012 2013 2014 2016 2017 2016 2017 20019
Node-red	8317	106	5100 (6000)	2013 2014 2014 2019 2019 2019 2019 2019 2019 2019 2019





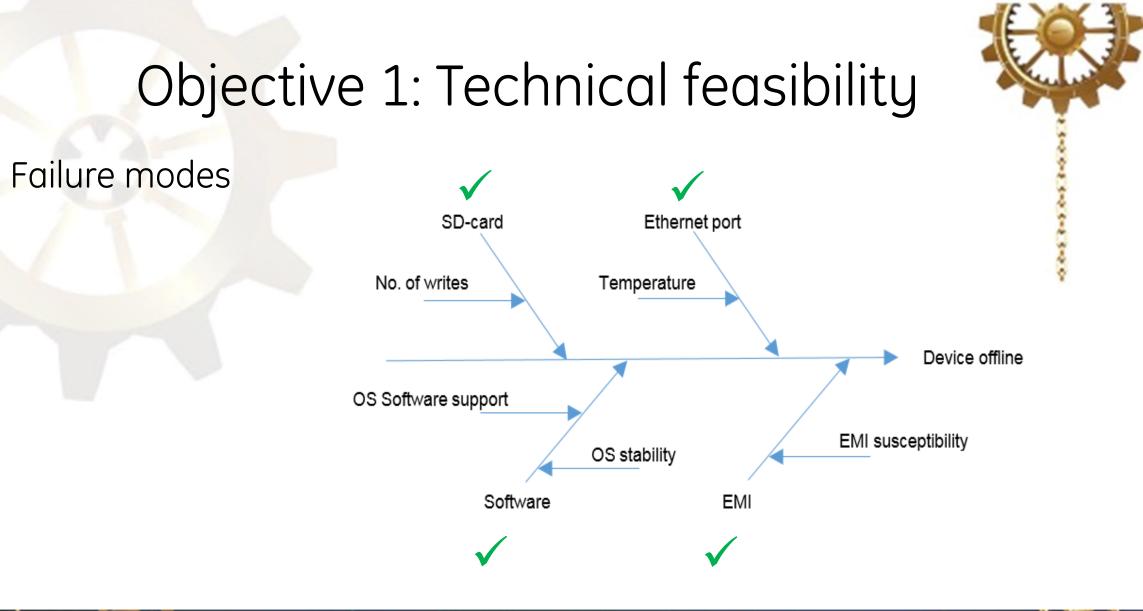
27th AMEU Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** *Building the Power Utility of the Future, Today*



Objective 1: Technical feasibility

Processor and memory performance

27th AMEU Technical Convention 2019 **The 4th Industrial Revolution ("4IR")** <u>Building the Power Utility of the Future, Today</u>



Objective 1: Technical feasibility

Availability performance

Last login: Mon Apr 10 22:27:49 2017 from 10.12.210.90 pi@raspberrypi:~ \$ ps -ef |_grep outs www-data 1734 1 99 2047 ? 47721-20:24:18 ./outstation-demo pi 7077 7066 0 13:48 pts/1 00:00:00 grep --color=auto outs pi@raspberrypi:~ \$ uptime 13:53:13 up 499 days, 22:52, 2 users, load average: 1.49, 1.45, 1.40 pi@raspberrypi:~ \$ ps -o etime= -p 1734 499-22:52:32 pi@raspberrypi:~ \$

Objective 2: Non-technical challenges

Human resources

Spares

Support

16 of 18

Objective 3: Cost advantages

Capex

Item	RPI	Vendor specific	
Microprocessor with DNP3 protocol	R 3 000	R 22 000	
Inputs (Digital and analogue)	R 800	R 6 000	
Temperature and humidity sensor	R 150	R 200	
Cabinet and accessories	R 1 100	Incl	
Total	R 5 050 → ~R 23	3 000 ← R 28 200	

eThekwini's 15 000 units

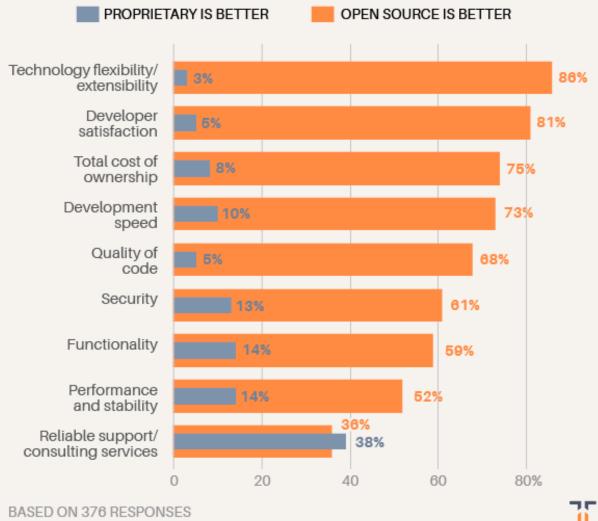
R 75 750 000 ---- ~

~R 345m ← R 423 000 000

Opex

Virtual ecosystem for support

Discussion and conclusion


A. Technically viable OS remote monitoring for Smart Grid

- Well supported Open Source software applications exist
- Open Source proposal indicates stability
- B. Non-technical challenges
 - More collaboration by Utility Engineers on Open Source concepts
- C. Costing
 - Significant upfront and operating cost benefits

OS proposal offers a compelling low cost remote monitoring solution

Flexibility and technology agility to organisation

Comparing open source and proprietary software

Questions

BASED ON 376 RESPONSES

27th AMEU Technical Convention 2019 The 4th Industrial Revolution ("4IR") Building the Power Utility of the Future, Today

[6]

References

[1] World's Top Exports, South Africa Imports and Exports, accessed 6 Jan 2020 <<u>http://www.worldstopexports.com/</u>>

[2] Open Source Definition, 2007. The Open Source Initiative, Opensource.org, accessed 6 Jan 2020 <<u>https://opensource.org/osd</u>>

[3] Morin A, Urban J, Sliz P 2012. A Quick Guide to Software Licensing for the Scientist-Programmer. PLoS Comput Biol 8(7): e1002598. https://doi.org/10.1371/journal.pcbi.1002598

References

[4]a Anurag, 2018. Raspberry Pi vs Arduino vs Beagle Board. New gen apps, accessed 6 Jan 2020 < https://www.newgenapps.com/blog/raspberry-pi-vs-arduino-vs-beagle-board

b¹ BeagleBone Black 2016, System Reference manual, accessed 6 Jan 2020 <<u>https://www.element14.com/community/docs/DOC-80255/l/beaglebone-black-industria</u>>

b² Beagleboard 2019, BeagleBone Black, accessed 6 Jan 2020 <<u>https://beagleboard.org/black</u>>

b³Beagleboard 2019, Arrow BeagleBone Black Industrial, accessed 6 Jan 2020 <<u>https://beagleboard.org/arrowbbbi</u>>

c Arduino 2019, ATMEGA328P, Arduino board, accessed 6 Jan 2020 < https://www.digchip.com/datasheets/parts/datasheet/1848/A000049.php

d¹ Allan, A 2016. The Raspberry Pi 3 Does Not Halt and Catch Fire, Makezine, accessed 6 Jan 2020 < <u>https://makezine.com/2016/03/02/raspberry-pi-3-not-halt-catch-fire/</u>>

d² Raspberrypi 2019, Frequency management and thermal control, accessed 6 Jan 2020 < <u>https://www.raspberrypi.org/documentation/hardware/raspberrypi/frequency-management.md</u>>

d³ Compulab 2019, IOT-GATE-RPi – Industrial Raspberry Pi IoT Computer, accessed 6 Jan 2020 < <u>https://www.compulab.com/products/iot-gateways/iot-gate-rpi-industrial-raspberry-pi-iot-gateway/</u>>

References

[5] a OpenDNP3 2019, GitHub repository, accessed 6 Jan 2020

b¹ OpenVPN 2019, GitHub repository, accessed 6 Jan 2020 <<u>https://github.com/OpenVPN/openvpn></u>

b² OPENVPN 2019, Forum statistics, accessed 6 Jan 2020 < <u>https://forums.openvpn.net/</u>>

c Pymodbus 2019, Github repository, accessed 6 Jan 2020 <<u>https://github.com/riptideio/pymodbus</u>>

d Node-red 2019, accessed 6 Jan 2020 <<u>http://nodered.org</u>>

[6] Grams, C 2019, There's one thing stopping Developers from using open source even more, The new stack, accessed 6 Jan 2020 <<u>https://thenewstack.io/theres-one-thing-stopping-developers-from-using-open-source-even-more/</u>>

27th AMEU Technical Convention 2019

The 4th Industrial Revolution ("4IR") | Building the Power Utility of the Future, Today

Thank you

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD