

Hitachi Energy – AEDU/AMEU Namibia

Power Quality- Mitigating the impact of renewable energy generation on the Grid

Nangolo Jackson – Electrical Market Manager Namibia & Botswana

Mangolo Jackson – Licouriou merice merice MSc Electrical High Voltage University of the Witwatersrand, MSc candidate Sustainable Energy NUST Hitachi Energy Hitachi Energy

A growing challenge

Power quality is a major concern for anyone involved in the generation, transmission and distribution of power, as well as for many industrial and commercial consumers.

The changing grid landscape including growth of renewable integration and non-conventional loads will draw more attention to power quality issues.

Our mission is to shape the future of a sustainable energy with pioneering technologies

A Day Without Power

For large companies, the cost of an outage can escalate into the millions of dollars per hour of downtime. In fact, the DoE recently estimated that outages are costing the U.S. economy \$150 billion annually

Studies have shown that the cost of data center outage has grown to more than \$8,000 per minute

For large manufacturing enterprises, a single hour of downtime tops the \$5 million mark

For large retailers, that cost is even higher, reaching upwards of \$5 million

0.1% down of availability can lead to 90% up of outage-related costs

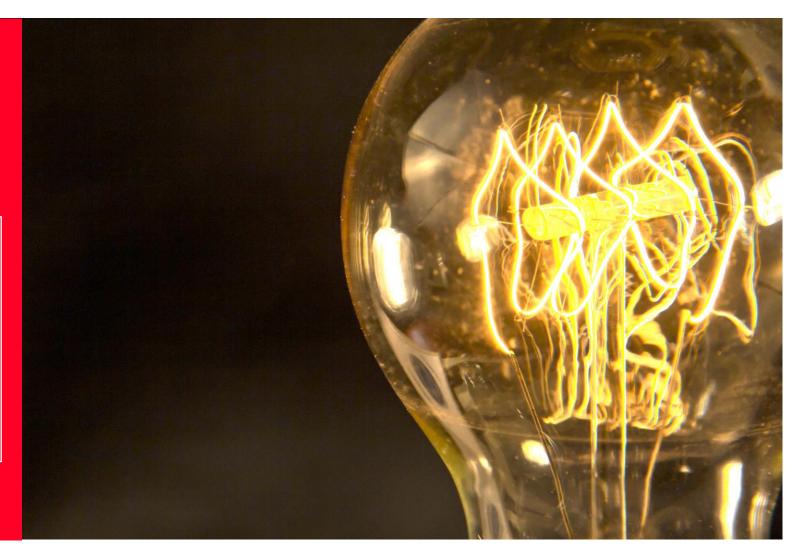
Good power quality is a measure of the availability, quality and efficiency of the electricity being supplied and utilized on a consistent basis. It leads to higher reliability and availability of the supply network, improved energy-efficiency, industrial productivity and eco-efficiency with lower environment impact

HOW TO ACHIEVE GOOD POWER QUALITY?

Analyze

Optimize

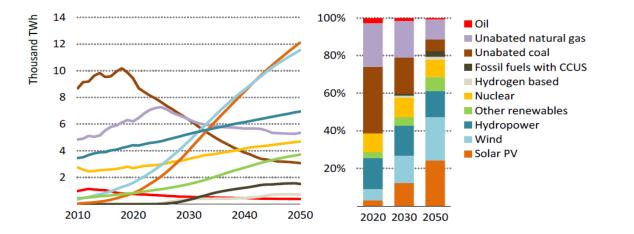
Realize


Your partner in handling unexpected events

Our solutions are deployed worldwide to ensure reliable power supplies and to ridethrough contingencies.

> We take our electricity for granted until the unexpected happens:

- Blackout
- Congestion
- Contingencies
- Flicker
- Generation loss
- Harmonics


- Overvoltage
- Power oscillation
- Reverse power flow
- Sensitive loads
- Voltage collapse
- Voltage unbalance

Hitachi Energy₆

Electricity generation

- Electricity generation is estimated to more than double in the next three decades
- By 2050, renewables are forecasted to reach new heights, and represent 70% of the energy mix

Challenges of change in Generation mix

 $\hat{\boldsymbol{x}}$

Increase level of renewables

- Lower system stability / reliability/inertia
- <u>ķ</u> Increased harmonics
 - Voltage stability issues
 - Reactive power

From centralized to distributed

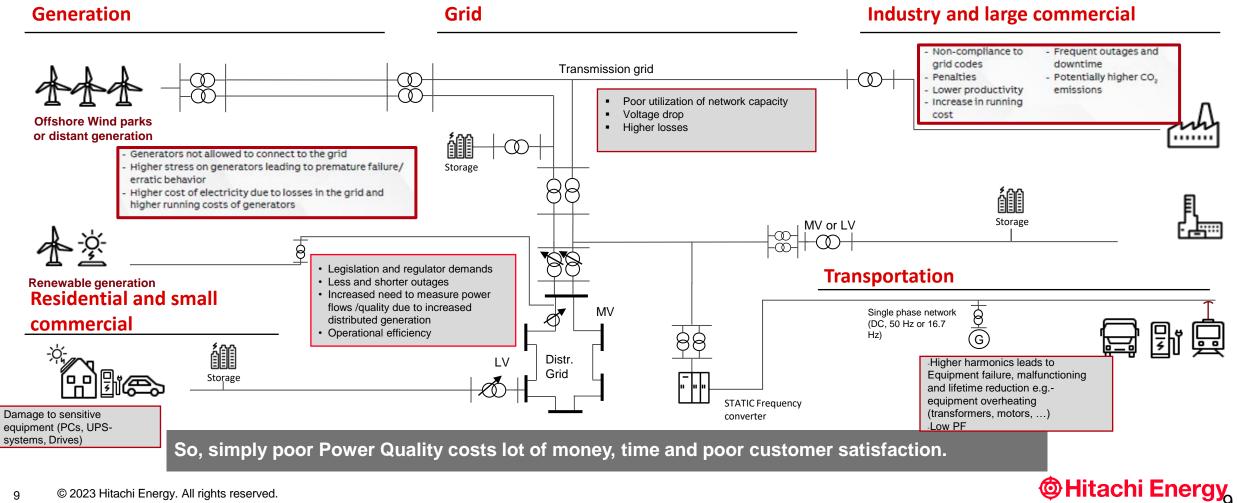
- More complex system controls
- Microgrid deployments
- Reverse flow issues

Áİİİ

Energy storage deployment

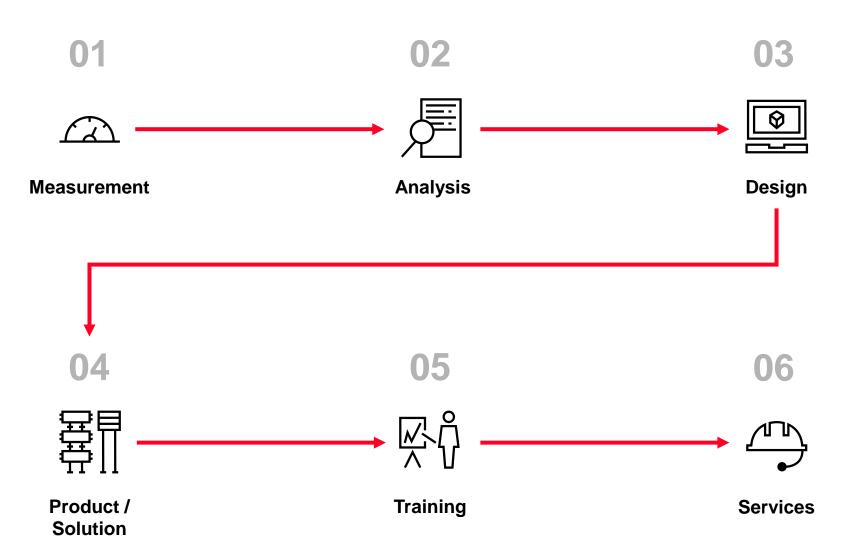
- Increased level of harmonics
- More complex system controls
- Energy support duration uncertainty

Optimization Contracting Co


Power quality challenges	Impact		
Reactive power demand in network	 Sub-optimal utilization of installed capacity Induction generators (in wind turbines) unable to feed reactive power Penalties from utility for violating stipulated limits or approval for grid connections Voltage drop, higher loss. 		
Harmonics injected into the grid	 High stress on network Equipment failure, malfunctioning and lifetime reduction e.g equipment overheating (transformers, motors,) Overheating of cables- Skin & Proximity effect 		
 Voltage variation, due to Weather changes affecting generation Connection / disconnection of generation capacity 	 Unstable power network Stress on the electrical infrastructure (e.g. switchgear), leading to premature aging or higher risk of failure 		
Load imbalance created by connection of single-phase solar inverters (in LV distribution networks)	 High stress on network, leading to potential failures 		

Power Quality- Not only Challenge for Renewable but also for the entire electrical value chain

- Transmission & Distribution, Industry & Large commercial and Transportation.


Power Quality Solutions

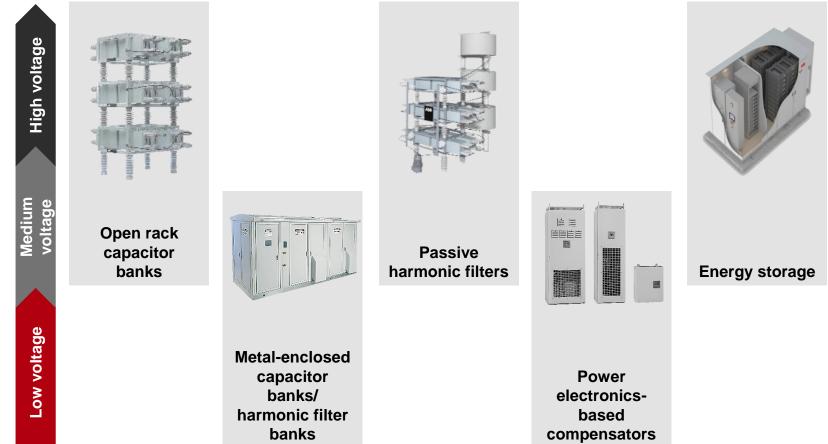
Solutions to help renewables integration

© 2023 Hitachi Energy. All rights reserved.

OHITACHI Energy

© 2023 Hitachi Energy. All rights reserved.

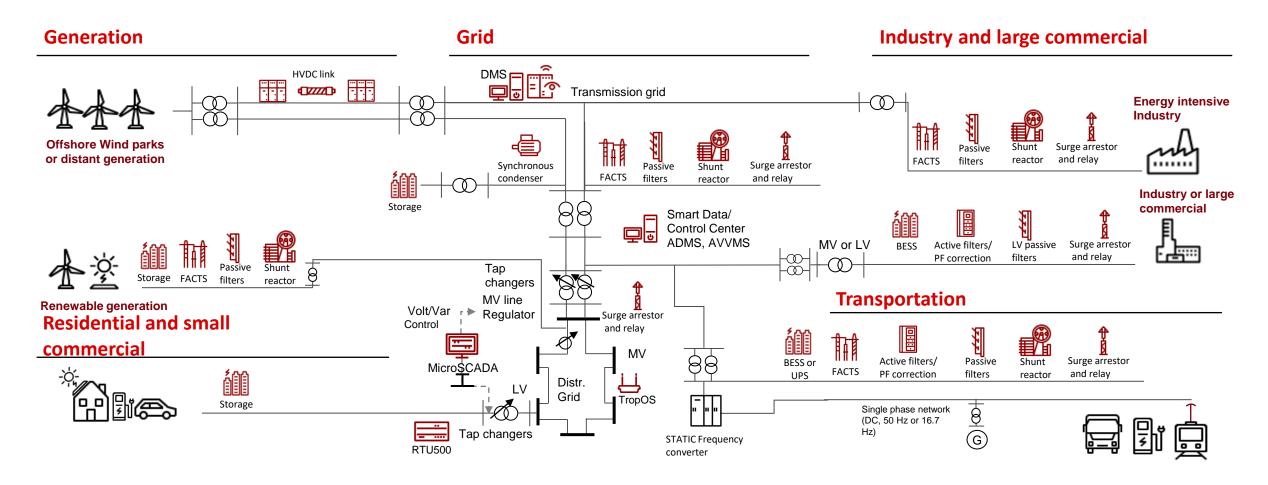
1 1


Benefits of power quality solutions for renewables

Increase **Capacity utilization** of renewable generators

Support Revenue maximization

Minimize **Voltage disruptions** caused in grid by renewable generation variations



OHITACHI Energy

1 2

HITACHI Inspire the Next

Power Quality Solutions – Generation, Transmission & Distribution, Industry & commercial and Transportation

References

Power quality solutions supporting renewables integration

© 2023 Hitachi Energy. All rights reserved.

Segment: Solar

Customer profile

- One of the largest single site solar PV generation facility, located in the Middle East region
- Planned capacity: 1.5 GW (in different stages)

Customer power quality challenge

- Meeting dynamic reactive power requirement at incomer level of power plant
- · Ensure optimum utilization of installed capacity

Solution by Hitachi Energy

 Metal enclosed capacitor bank ABBACUS: total 270 Mvar (16 units of 3 * 5 Mvar stages), with air core detuned reactors

Customer benefits

- · Stable and efficient operation of solar farm
- Compliance of utility grid code

Sun Africa Angola Solar

Background

• Awarded seven contracts related to a large solar (photovoltaic) project in Angola.

Project scope

- The project is divided in seven different contracts, one for each plant. Hitachi Energy scope includes high voltage substations.
- The rest of the scope is electrical equipment for transferring the DC received from the solar panels to AC on the right voltage level for connection to the main grid or local network at the location for each plant respectively

Project highlight or significant info

- The project is stated to be Sub-Saharan Africa's largest solar project by our customer MCA. **Impact**
- Contributing to the UN's Sustainable Development Goal 7 increasing access to affordable, reliable and sustainable energy for Angola's 30 million people.

		Booked in	Dec '19
PGGI			
Global Product Group	Dry & Traction	Country	Angola
Segment	Renewables	يئيت	
Product Name &	Scope		

7 x contracts for HV substations Electrical equipment for transferring the DC received from the solar panels to AC on the right voltage level for connection to the main grid or local network at the location for each plant respectively

© 2023 Hitachi Energy. All rights reserved.

Segment: Wind

Customer profile

- Onshore wind farm in Oceania
- 13 units of wind turbines, with total generation capacity ~19.5 MW

Customer power quality challenge

- Regulate harmonic distortion in Medium Voltage (MV) distribution network while injecting wind power
- Offer reactive power support to optimize wind turbine output and adhere to grid code limits

Solution by Hitachi Energy

- Active harmonic filters: 3 units of 450 A each (containerized solution)
- Low-voltage solution (440 V), connected to MV bus through dedicated transformer

Customer benefits

- Suppression of harmonics in output
- · Stable and efficient operation of the wind farm
- Assured compliance to grid code

Presence across Renewable segment

Windfarm project, Sweden

Country: Sweden

Customer issue:

• Harmonic pollution & voltage support

Power quality solution from ABB: Mechanically switched 170 kV 400 Mvar + 200 Mvar Damped Filter banks

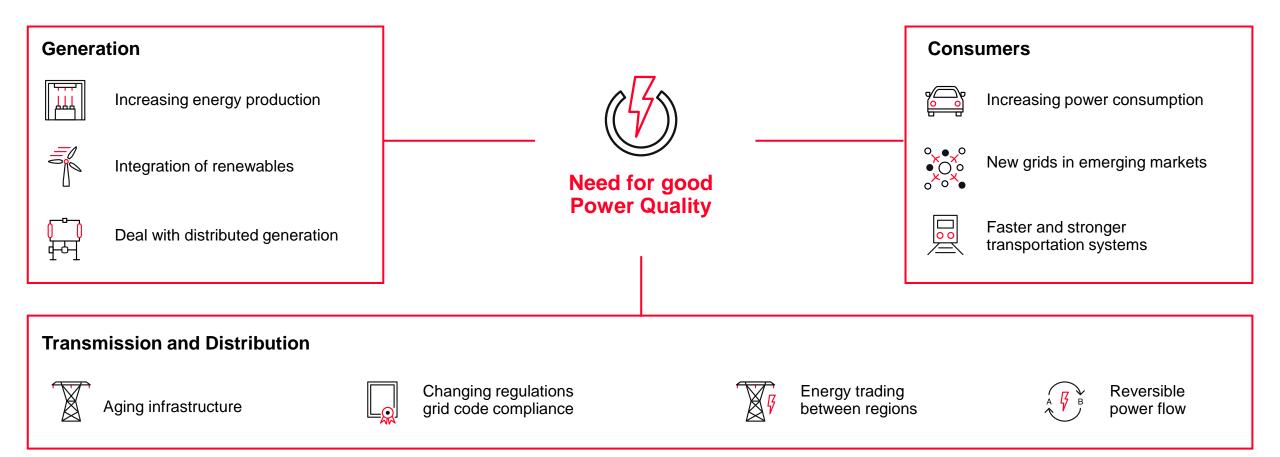
Result:

- To improve the power quality by providing voltage stability in the network & harmonic suppression
- To meet the grid code requirement

Market

- Penetration of renewables and their support for system operations redefines some power quality aspects
- Power quality aspects remain a relevant topic for the electrical networks- Generation, Transmission, Distribution & Load side.
- New load demand- E Mobility, expansion of data centers, etc demands power quality.

Technology


- Power electronics utilized for grid interface, improving productivity.
- Control of harmonics, transient and steady state phenomena need attention
- Reactive power management- Both Passive & Active technology.

Hitachi Energy


- We have vast expertise and experience with power quality solutions
- Our portfolio covers all voltage levels and applications in relevant market segments
- Our global presence supports your power quality needs

19 © 2023 Hitachi Energy. All rights reserved.

Range and configuration

- The ranges of the different STATCOMs are not rigid, meaning that they might overlap their "specific ranges"
- Parallel connection of SVC Light[®] IGCT may be used for selected projects as alternative to SVC Light[®] IGBT or two PCS6000 in parallel can be an alternative to one SVC Light[®] IGCT

Selection criteria

The selection of converter solution should be done related to:

- Capability of fulfilling application requirements in optimal way
- Impact on other subsystems for optimizing the overall system cost, footprint, reliability and losses

OHitachi Energy

Mvar

with one single

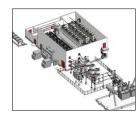
converter

Power Quality – FACTS Flexible AC Transmission Systems

Dynamic Shunt Compensation

SVC Classic

- Improved voltage control and power quality
- Load balancing
- Flicker mitigation
- Increased productivity

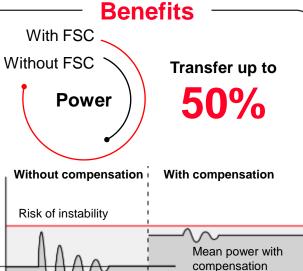

STATCOM

- Similar benefits as for SVC Classic
- More robust in weak grids
- Higher performance flicker mitigation
- Reduced footprint

Synchronous Condenser

- Increase of short circuit power
- Increased network inertia
- Voltage fluctuation damping (+/- Mvar control)

E-STATCOM


- Similar benefits as for STATCOM
- Increased network inertia
- Increase of short circuit power

Series Compensation

Transmitted power

- **Fixed Series Compensation**
- Increased power transfer capability
- Improved voltage and transient stability
- Improved voltage profile along the line

Mean power without

compensation

Static Frequency Conversion

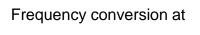
Rail Static Frequency Converter (SFC)

Active power in-feeding 3 phases-1 phase to 16,7/25Hz, 50/60 Hz

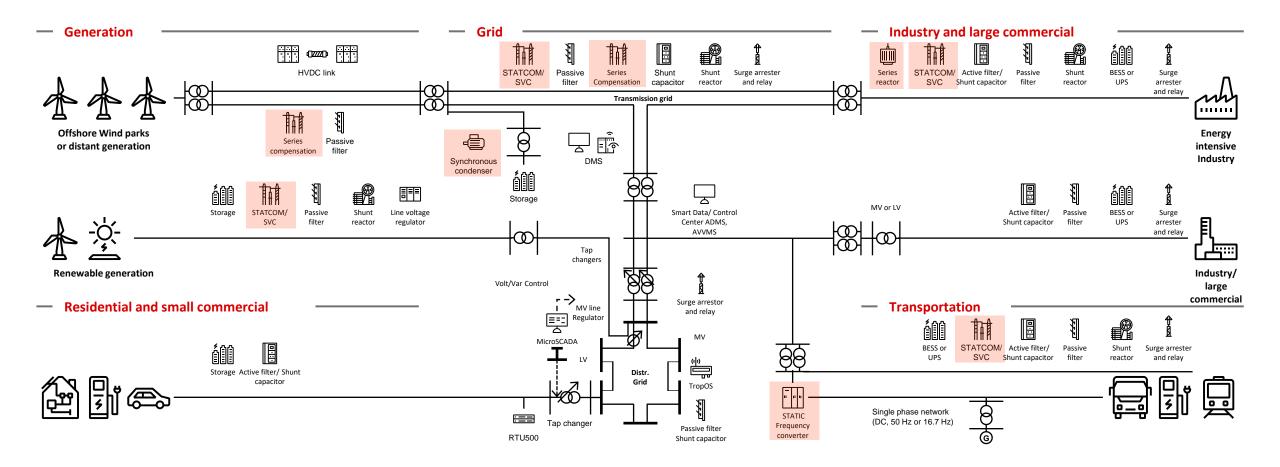
- Full decoupling of grids
- Independent, fast control of frequency, voltage, active and reactive power on both sides
- Connection to weak grids

Benefits

Reliable railway interconnections

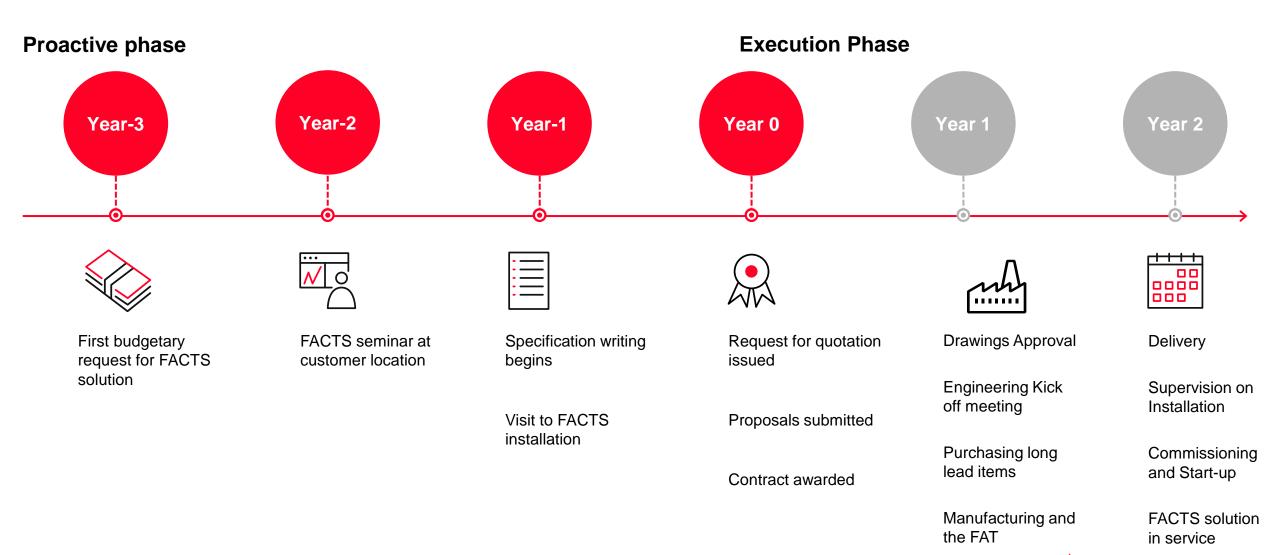


3-phase National grids


1-phase Railway grids

16.7, 25 50, 60 Hz

HITACHI Inspire the Next


OHITACHI Energy

References for FACTS installations in Africa

AO01: Luanda, 1985 SVC 15 kV, 0/+9 Mvar	EG06: NPSS, 2014 SVC 22 kV, 0/+85 Mvar	,	Vanderbijlpark SVC)/+40 Mvar 30 kV	11 kV, 0/+6 Mvar	Mercury SC 765 kV, 1125 Mvar	05 01 01 02 01 02 01 02
AO02: ENE, 2006 Gabela SC 220 kV, 30 Mvar	EG07: EETC, 2020 East Ouynat STATCOM 220 kV, -200/+200 Mva		1 SC Luckhoff 1 SC	ZA19: Kimberley mine, 1984 SVC 3 11 kV, 0/+6 Mvar	ZA32: ESKOM, 2008 Alpha 1 SC 765 kV, 450 Mvar	02 03 02 03 04 Algeria (DZ) 01 02 03 04 Libya (LY) 01 02 03 06 04 05 Egypt (EG)
CD01: SNEL, 2011 Karavia SVC 220 kV, -75/+75 Mvar	LY01: Tripoli 1, 1981 SVC 230 kV, 0/+50 Mvar	SN02: SOGEM, Dagana 2 225 kV, 2	2 SC Luckhoff 2 SC	ZA20: Middelburg mine, 1993 SVC 1 33 kV, 0/+85 Mvar	ZA33: ESKOM, 2008 Alpha 2 SC 765 kV, 450 Mvar	
DZ01: El Hadjar, 1977 SVC 63 kV	LY02: Tripoli 2, 1981 SVC 230 kV, 0/+50 Mvar	SN03: SOGEM, Matam 1 225 kV, 2	1 SC Victoria 1 SC	ZA21: Middelburg mine, 1993 SVC 2 33 kV, 0/+165 Mvar	ZA34: ESKOM, 2008 Beta 1 SC 765 kV, 1350 Mvar	Senegal (SN) 01 02 01 Nigeria (NG)
DZ02: Sonelgaz, 1995 Bechar 1 SVC 220 kV, -10/+40 Mvar	LY03: Tripoli 3, 1981 SVC 230 kV, 0/+50 Mvar	SN04: SOGEM, Matam 2 225 kV, 2	2 SC Victoria 2 SC	ZA22: Saldanha steel, 1996 SVC 1 33 kV, 0/+60 Mvar	ZA35: ESKOM, 2008 Beta 2 SC 765 kV, 1350 Mvar	000
DZ03: Sonelgaz, 1995 Bechar 2 SVC 220 kV, -10/+40 Mvar	LY04: Tripoli 4, 1981 SVC 230 kV, 0/+50 Mv	TN01: El Foulad SVC 11 kV, 0/-	ndh 1, 1975 ZA10: ESKOM, 1974 Nestor 2 SC 0/+45 Mvar 400 kV	ZA23: Saldanha steel, 1996 SVC 2 33 kV, 0/+165 Mvar	ZW01:ZESA, 1994 Insukamini SVC 330 kV, -100/+200 Mvar	
DZ04: Sonelgaz, 1995 Naama SVC 220 kV, -10/+40 Mvar	ML01: SOGEM, 2000 Kayes SC 225 kV, 23 Mvar	TN02: El Foulad SVC 11 kV, 0/-	adh 2, 2006 ZA11: ESKOM, 1975 Aurora SC V+45 Mvar 400 kV	ZA24: Namakwa steel 1997 SVC 33 kV, -6/+86 Mvar		
DZ05: AQS, 2015 SVC 33 kV, 0/+320 Mvar	NA01: NamPower, 1999 Auas SVC 400 kV, -250/+80 Mvat		old, 2022 ZA12: ESKOM, 1975 STATCOM Juno SC 12/+12 Mvar 400 kV	ZA25: ESKOM, 2002 Bacchus SC 400 kV, 247 Mvar		Namibia (NA)
EG01: EASRCO, 2003 SVC 33 kV, 0/+160 Mvar	NG01: Delta steel 1, 1977 SVC 33 kV		Idid, 2022 ZA13: ESKOM, 1975 STATCOM Helios SC 12/+12 Mvar 400 kV	ZA26: ESKOM, 2002 Proteus 1 SC 400 kV, 230 Mvar		• STATCOM
EG02: Esisco 1, 2007 SVC 33 kV, 0/+195 Mvar	NG02: Delta steel 2, 1977 SVC 33 kV	ZA01: ESKOM, Nestor 1 400 kV	, ,	ZA27: ESKOM, 2008 Serumula SC 400 kV, 879 Mvar		SC (series capacitors)
EG03: Esisco 2, 2008 SVC 33 kV, 0/+195 Mvar	NG03: Delta steel 3, 1977 SVC 33 kV	ZA02: ESKOM, Nestor 3 400 kV		ZA28: ESKOM, 2008 Iziko 1 SC 400 kV, 679 Mvar		
EG04: IIC steel 1, 2014 SVC 22 kV, 0/+85 Mvar	NG04: Ajaokuta 1, 1980 SVC 11 kV, 0/+9 Mvar	ZA03: ESKOM, Komsber 400 kV, 2		ZA29: ESKOM, 2008 Iziko 2 SC 400 kV, 697 Mvar		15 (18) (19) (10) (10) (10) (10) (10) (10) (10) (10
EG05: IIC steel 2, 2014 SVC 22 kV, 0/+85 Mvar	NG05: Ajaokuta 2, 1980 SVC 11 kV, 0/+7 Mvar	ZA04: ESKOM, Komsber 400 kV, 2	· · · · · · · · · · · · · · · · · · ·	34 ZA30: ESKOM, 2008 Perseus SC 765 kV, 900 Mvar		11 12 23 23 25 26 26

OHitachi Energy

26 © 2023 Hitachi Energy. All rights reserved.

OHITACHI Energy

HITACHI Inspire the Next