


# 68<sup>TH</sup> AMEU CONVENTION 2022

Durban International Convention Centre 2 – 5 October 2022

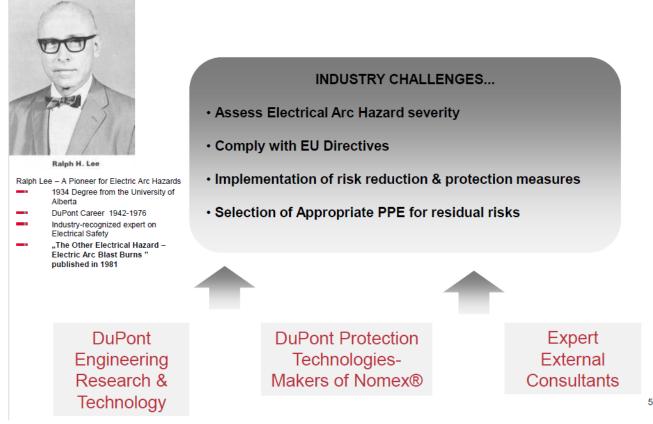
A JUST ENERGY TRANSITION ("JET") FOR SOUTH AFRICA

# The Evolution of SANS 724 performance standards. Protecting workers against the effects of an electric arc

Presented by Dharmesh Lakmidas Thermal Industrial Sales Manager DuPont™

Hosted by

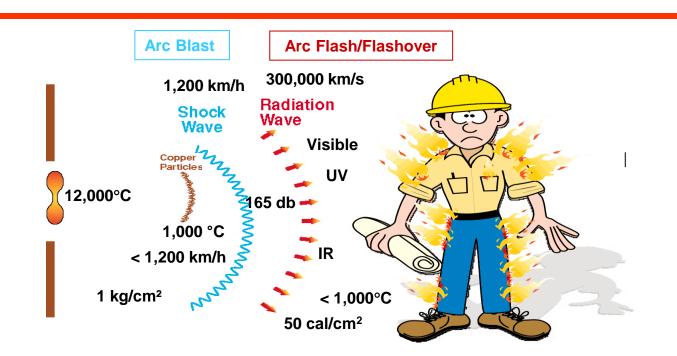



### Contents



- 1. Why protect- Electrical workers
- 2. Causes of an electric arc
- 3. IEC 61482-1/2-SANS 724
- 4. Different fabric solutions
- 5. Understanding burn injury, complying to NFPA 2112/70E
- 6. Understanding test reports




#### DuPont Aims to Help Safety Managers with the Challenges Faced by Electric Arc



10/17/2022

Internal use only

### What Happens During An Electrical Arc?



#### **Associated risks:**

- Burn injury through arc radiation energy or molten metal splashes
- ⇒Noise & pressure injury through shock wave

⇒Inhalation injury

#### Vorkplace Hazards

# Electrical Arc Hazard

- A continuous electric discharge of high current between two electrodes, generating very bright light and intensive heat.
- 5-10 electrical arc accidents occur per day in the USA. (Source: <u>www.arcadvisor.com</u>)
- Possible causes of electrical arcs:
  - accidental contact with energized parts eg. during switching operations
  - contamination such as dust on insulating surfaces
  - wiring errors
  - corrosion of equipment parts and contacts
  - improper work procedures
- Factors determining the heat energy of an electrical arc
  - Amount of current discharged
  - The duration of the arc is determined by the speed of the over-current protective devices, e.g. < 1 s for typical fuses.
  - The distance between the worker and the arc
  - The confinement of the arc





Protection against thermal effects of an electric arc:

 IEC 61482-2 "Protective clothing against the thermal hazards of an electric arc – Part 2: Requirements"-SANS 724

✓ <u>Material arc testing:</u>

 ✓ Open arc test (IEC 61482-1-1/Method A): Arc Thermal Performance Value (ATPV) and/or Break-open Threshold Energy (EBT)

### ✓ Garment arc testing

 Open arc test (IEC 61482-1-1/Method B): pass visual evaluation when tested at arc rating incident energy and/or

SANS 724

### IEC 61482-1-1 (Open Electric Arc Safety Concept)

Workers are assumed safe if the following condition is fulfilled:

Arc rating of protective clothing

>

Calculated arc incident energy

Arc Thermal Performance Value (ATPV)

• Maximum incident thermal energy (cal/cm<sup>2</sup>) that the fabric can support before wearer will

suffer onset of second degree burns. (Mini. 20 test results)

Breakopen threshold energy (E<sub>BT</sub>)

• Highest incident energy exposure value on a fabric below the Stoll curve where the specimens

do not exhibit break open. (Mini. 5 test results - recommend 10)

Minimum Single layer ATPV = 167,5 kJ/m<sup>2</sup> (4 cal/cm<sup>2</sup>).

### **Predict : Arc Flash Hazard Assessment**



#### How to assess the severity of the hazard?

- 1.2 cal/cm<sup>2</sup> applied to skin for 1 second: the threshold for the onset of second degree burns
- Calculate the "Incident Energy", which defines the severity of the arc flash at workers' distance
  - Expressed in kJ/m<sup>2</sup>, J/cm<sup>2</sup>, or cal/cm<sup>2</sup>
- Calculate Arc flash boundary
  - Expressed in m, cm
- Recognized methods for Incident Energy Calculation are given in :

IEEE 1584-2002: Guide for Performing Arc Flash Hazard Calculations

# How to review different fabric solutions

Kevlar. | Nomex. | Tychem. | Tyvek.

## WHY NOT EVERYDAY CLOTHING ?

- Everyday conventional fabrics can ignite and continue to burn on the body, increasing the extent of a worker's burn injury
- Fabrics which IGNITE include:
  - Cotton, viscose, wool
- Fabrics which IGNITE and MELT include:
  - Polyester, Nylon, acetate, rayon

#### **PURPOSE OF FLAME RESISTANT (FR) FABRICS**

#### Reduce Burn Injury and Increase Chance of Survival

- Does Not Ignite and Continue to Burn
- Does Not Melt and Drip
- Maintains a Barrier
- Insulates the Wearer from Heat
- Resists Breaking Open
- Provides Valuable Escape Time

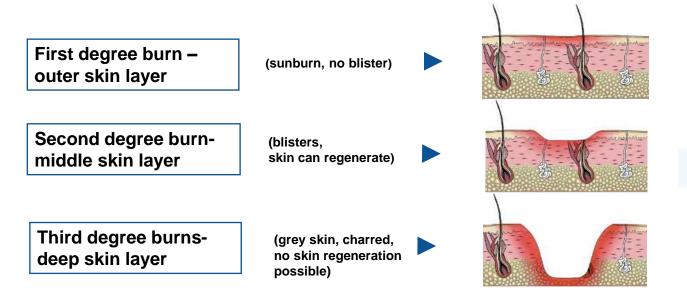


However, Burn Injuries Can Occur In Spite Of The Use of FR Clothing

#### **TYPES OF FLAME RESISTANT / RETARDANT (FR) FABRICS**

#### Not All FR Is Made The Same

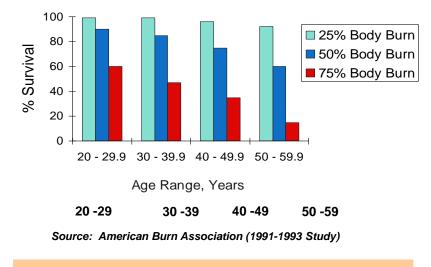
- Inherent
  - FR performance is present in the DNA / chemistry of the fiber at the time of production
  - Fiber molecular structure does not support combustion
- Chemically Treated
  - After fabric is manufactured, it is treated with flame retardant chemicals to make it flame resistant (FR)
  - Produces char/gases to inhibit combustion








# Burn Injury Fundamentals • Normal skin temperature @ 32.5 ° C


- Skin burn onset @ > 44 ° C
- Instantaneous @ 72 ° C
- Burn depth is a measure of severity ٠

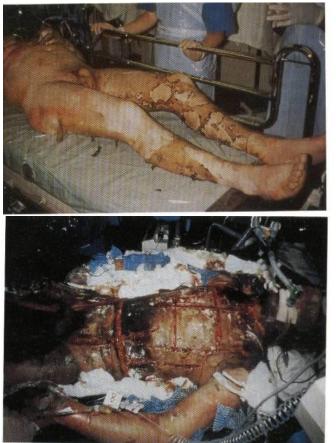


Onset of 2 deg burn @ 1.2 Cal/cm2

# **Predicted Survival Rates**

• Body Burns are predictor of expected survival rates.




Survival from burn injury depends on 2 factors:

- ⇒ % Body burn
- ⇒ Age of the injured person

# **Skin Burn Evaluation**

Second degree burns

(blisters, skin can regenerate)



#### Third degree burns

(grey skin, charred, no skin regeneration possible)

Photos courtesy DuPont

### Simulated Electric Arc Flash: Inherent fabric during an arc

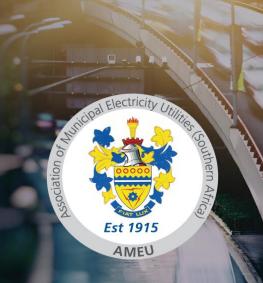


**Before Electric Arc Flash** 



**During Electric Arc Flash** 




After Electric Arc Flash

The garment made of Nomex® Essential Arc did not ignite nor break-open !

# Arc test report

| Report # K-418406-1208P16                                                      |                                                                                                      | Test Report<br>Kinectrics Inc., 800 Kipling Avenue, Unit 2                      |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Samples Received:<br>AUG 1, 2012                                               | Samples Tested:<br>AUG 16, 2012                                                                      | Toronto, Ontario, Canada<br>Tel: 416-207-6000, www.kinectrics.com ISO 9001-2008 |
| Tested for                                                                     |                                                                                                      | Contact information for item tested:                                            |
| Hugh Hoagland                                                                  |                                                                                                      | Reiyao Zhu/Dave Klinger                                                         |
| ArcWear.com                                                                    |                                                                                                      | DuPont                                                                          |
| 502-333-0510                                                                   |                                                                                                      | 804-383-3977                                                                    |
| arctesting@arcwear.com                                                         |                                                                                                      | reiyao.zhu@usa.dupont.com                                                       |
|                                                                                |                                                                                                      |                                                                                 |
| Reference Standa<br>ASTM F1959/F195<br>Standard Test Me<br>Electric Arc Expos  | 59M-06ae1<br>thod for Determining Ar                                                                 | c Thermal Performance of Textile Materials for Clothing by                      |
| ASTM F1959/F199<br>Standard Test Me<br>Electric Arc Expos                      | 59M-06ae1<br>thod for Determining Ar<br>sure Method                                                  |                                                                                 |
| ASTM F1959/F195<br>Standard Test Mer<br>Electric Arc Expos<br>Test Parameters: | 59M-06ae1<br>thod for Determining Ar<br>sure Method<br>Test current: 8 kA                            | Number of samples analysed: 27                                                  |
| ASTM F1959/F195<br>Standard Test Mer<br>Electric Arc Expos<br>Test Parameters: | 59M-06ae1<br>thod for Determining Ar<br>sure Method<br>Test current: 8 kA<br>stance to Fabric: 30 cr | Number of samples analysed: 27                                                  |
| ASTM F1959/F195<br>Standard Test Mer<br>Electric Arc Expos<br>Test Parameters: | 59M-06ae1<br>thod for Determining Ar<br>sure Method<br>Test current: 8 kA                            | Number of samples analysed: 27                                                  |

10/17/2022



### 68TH AMEUCONVENTION 2022 A JUST ENERGY TRANSITION ("JET") FOR SOUTH AFRICA

# Thank you

